Cargando…

Recherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de taus dans l'expérience CMS au LHC à l'aide du machine learning

Despite decades of correct predictions, physicists are convinced that the Standard Model (SM) does not show us the whole picture. Among the various extensions going beyond the SM (BSM), the Minimal Supersymmetric extension of the SM (MSSM) predicts two charged Higgs bosons, H± , and three neutrals:...

Descripción completa

Detalles Bibliográficos
Autor principal: Torterotot, Lucas
Lenguaje:fre
Publicado: 2021
Materias:
Acceso en línea:http://cds.cern.ch/record/2775885
_version_ 1780971598157709312
author Torterotot, Lucas
author_facet Torterotot, Lucas
author_sort Torterotot, Lucas
collection CERN
description Despite decades of correct predictions, physicists are convinced that the Standard Model (SM) does not show us the whole picture. Among the various extensions going beyond the SM (BSM), the Minimal Supersymmetric extension of the SM (MSSM) predicts two charged Higgs bosons, H± , and three neutrals: h corresponding to the observed one discovered in 2012 and H and A being additionnals with respect to the SM. The MSSM phenomenology motivates the focus on events containing a di-τ pair. The MSSM H/A → ττ analysis is thus the core of this thesis. In this thesis, the search for H and A is performed on the data collected with the CMS detector from 2016 to 2018 on proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb−1. Jets are complex physics objets obtained in the proton collisions occuring at the CERN LHC. Their calibration by the study of events containing a photon and a jet (γ + jet) and the corresponding results on 2018 data are introduced. These results are used in the official CMS jet calibration. No significant deviation above the expected background is observed in the MSSM H/A → ττ analysis. Model-independent limits are then set on the product of the cross section and branching fraction for the production via gluon-fusion or in association with b quarks. These limits range from 15 pb at 110 GeV to 3×10−4 pb at 3,2 TeV for gluon-fusion and from 1,2 pb at 110 GeV to 3×10−4 pb at 3,2 TeV for b-associated production. In the Mh125 scenario, these limits translate into an exclusion region in the (mA, tan β) plane. Values of mA below 600 GeV are excluded and this goes up to 2 TeV for tan β ≈ 50. In the MH1125(CPV) scenario, the region is given in the (mH±, tan β) plane. Values of mH± below 400 GeV are excluded and this goes up to 1,4 TeV for tan β ≈ 20. To test any theory involving Higgs or Z bosons decaying to τ+τ−, the reconstruction of di-τ mass in a faster and more accurate way than the existing methods is crucial. However, it is an arduous task due to existence of neutrinos as decay product of each τ lepton which are invisible to detectors at LHC. Machine learning techniques bring a solution for this task. The reconstruction of the di-τ mass by a deep neural network (DNN) is achieved in this thesis from 50 GeV to 800 GeV with a 20 % resolution at 50 GeV, 26 % at 250 GeV and 22 % at 800 GeV. This DNN is 60 times faster and better at describing the Z boson than the SVFIT algorithm currently used in CMS.
id cern-2775885
institution Organización Europea para la Investigación Nuclear
language fre
publishDate 2021
record_format invenio
spelling cern-27758852021-07-23T20:09:32Zhttp://cds.cern.ch/record/2775885freTorterotot, LucasRecherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de taus dans l'expérience CMS au LHC à l'aide du machine learningParticle Physics - ExperimentDetectors and Experimental TechniquesDespite decades of correct predictions, physicists are convinced that the Standard Model (SM) does not show us the whole picture. Among the various extensions going beyond the SM (BSM), the Minimal Supersymmetric extension of the SM (MSSM) predicts two charged Higgs bosons, H± , and three neutrals: h corresponding to the observed one discovered in 2012 and H and A being additionnals with respect to the SM. The MSSM phenomenology motivates the focus on events containing a di-τ pair. The MSSM H/A → ττ analysis is thus the core of this thesis. In this thesis, the search for H and A is performed on the data collected with the CMS detector from 2016 to 2018 on proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb−1. Jets are complex physics objets obtained in the proton collisions occuring at the CERN LHC. Their calibration by the study of events containing a photon and a jet (γ + jet) and the corresponding results on 2018 data are introduced. These results are used in the official CMS jet calibration. No significant deviation above the expected background is observed in the MSSM H/A → ττ analysis. Model-independent limits are then set on the product of the cross section and branching fraction for the production via gluon-fusion or in association with b quarks. These limits range from 15 pb at 110 GeV to 3×10−4 pb at 3,2 TeV for gluon-fusion and from 1,2 pb at 110 GeV to 3×10−4 pb at 3,2 TeV for b-associated production. In the Mh125 scenario, these limits translate into an exclusion region in the (mA, tan β) plane. Values of mA below 600 GeV are excluded and this goes up to 2 TeV for tan β ≈ 50. In the MH1125(CPV) scenario, the region is given in the (mH±, tan β) plane. Values of mH± below 400 GeV are excluded and this goes up to 1,4 TeV for tan β ≈ 20. To test any theory involving Higgs or Z bosons decaying to τ+τ−, the reconstruction of di-τ mass in a faster and more accurate way than the existing methods is crucial. However, it is an arduous task due to existence of neutrinos as decay product of each τ lepton which are invisible to detectors at LHC. Machine learning techniques bring a solution for this task. The reconstruction of the di-τ mass by a deep neural network (DNN) is achieved in this thesis from 50 GeV to 800 GeV with a 20 % resolution at 50 GeV, 26 % at 250 GeV and 22 % at 800 GeV. This DNN is 60 times faster and better at describing the Z boson than the SVFIT algorithm currently used in CMS.CERN-THESIS-2021-088oai:cds.cern.ch:27758852021-07-15T15:41:23Z
spellingShingle Particle Physics - Experiment
Detectors and Experimental Techniques
Torterotot, Lucas
Recherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de taus dans l'expérience CMS au LHC à l'aide du machine learning
title Recherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de taus dans l'expérience CMS au LHC à l'aide du machine learning
title_full Recherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de taus dans l'expérience CMS au LHC à l'aide du machine learning
title_fullStr Recherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de taus dans l'expérience CMS au LHC à l'aide du machine learning
title_full_unstemmed Recherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de taus dans l'expérience CMS au LHC à l'aide du machine learning
title_short Recherche de bosons de Higgs supplémentaires de haute masse se désintégrant en paire de taus dans l'expérience CMS au LHC à l'aide du machine learning
title_sort recherche de bosons de higgs supplémentaires de haute masse se désintégrant en paire de taus dans l'expérience cms au lhc à l'aide du machine learning
topic Particle Physics - Experiment
Detectors and Experimental Techniques
url http://cds.cern.ch/record/2775885
work_keys_str_mv AT torterototlucas recherchedebosonsdehiggssupplementairesdehautemassesedesintegrantenpairedetausdanslexperiencecmsaulhcalaidedumachinelearning