Cargando…
Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks
The high-luminosity upgrade of the LHC will come with unprecedented physics and computing challenges. One of these challenges is the accurate reconstruction of particles in events with up to 200 simultaneous protonproton interactions. The planned CMS High Granularity Calorimeter offers fine spatial...
Autores principales: | Qasim, Shah Rukh, Long, Kenneth, Kieseler, Jan, Pierini, Maurizio, Nawaz, Raheel |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125103072 http://cds.cern.ch/record/2775923 |
Ejemplares similares
-
End-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networks
por: Qasim, Shah Rukh, et al.
Publicado: (2022) -
Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks
por: Qasim, Shah Rukh
Publicado: (2021) -
Calibration of a Highly Granular Hadronic Calorimeter with SiPM Readout
por: Simon, Frank
Publicado: (2008) -
Energy Reconstruction of Hadron Showers in the CALICE Calorimeters
por: Simon, Frank
Publicado: (2009) -
Track Segments in Hadronic Showers: Calibration Possibilities for a Highly Granular HCAL
por: Simon, Frank
Publicado: (2009)