Cargando…
Particle Cloud Generation with Message Passing Generative Adversarial Networks
In high energy physics (HEP), jets are collections of correlated particles produced ubiquitously in particle collisions such as those at the CERN Large Hadron Collider (LHC). Machine learning (ML)-based generative models, such as generative adversarial networks (GANs), have the potential to signific...
Autores principales: | Kansal, Raghav, Duarte, Javier, Su, Hao, Orzari, Breno, Tomei, Thiago, Pierini, Maurizio, Touranakou, Mary, Vlimant, Jean-Roch, Gunopulos, Dimitrios |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2776384 |
Ejemplares similares
-
Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
por: Kansal, Raghav, et al.
Publicado: (2020) -
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
por: Touranakou, Mary, et al.
Publicado: (2022) -
Evaluating generative models in high energy physics
por: Kansal, Raghav, et al.
Publicado: (2022) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC
por: Orzari, Breno, et al.
Publicado: (2021)