Cargando…
Tree boosting for learning EFT parameters
We present a new tree boosting algorithm designed for the measurement of parameters in the context of effective field theory (EFT). To construct the algorithm, we interpret the optimized loss function of a traditional decision tree as the maximal Fisher information in Poisson counting experiments. W...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2776940 |
_version_ | 1780971651381329920 |
---|---|
author | Chatterjee, Suman Frohner, Nikolaus Lechner, Lukas Schöfbeck, Robert Schwarz, Dennis |
author_facet | Chatterjee, Suman Frohner, Nikolaus Lechner, Lukas Schöfbeck, Robert Schwarz, Dennis |
author_sort | Chatterjee, Suman |
collection | CERN |
description | We present a new tree boosting algorithm designed for the measurement of parameters in the context of effective field theory (EFT). To construct the algorithm, we interpret the optimized loss function of a traditional decision tree as the maximal Fisher information in Poisson counting experiments. We promote the interpretation to general EFT predictions and develop a suitable boosting method. The resulting "Boosted Information Tree" algorithm approximates the score, the derivative of the log-likelihood function with respect to the parameter. It thus provides a sufficient statistic in the vicinity of a reference point in parameter space where the estimator is trained. The training exploits per-event information of likelihood ratios for different theory parameter values, available in the simulated EFT data sets. |
id | cern-2776940 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27769402021-12-17T09:00:57Zhttp://cds.cern.ch/record/2776940engChatterjee, SumanFrohner, NikolausLechner, LukasSchöfbeck, RobertSchwarz, DennisTree boosting for learning EFT parametershep-phParticle Physics - PhenomenologyWe present a new tree boosting algorithm designed for the measurement of parameters in the context of effective field theory (EFT). To construct the algorithm, we interpret the optimized loss function of a traditional decision tree as the maximal Fisher information in Poisson counting experiments. We promote the interpretation to general EFT predictions and develop a suitable boosting method. The resulting "Boosted Information Tree" algorithm approximates the score, the derivative of the log-likelihood function with respect to the parameter. It thus provides a sufficient statistic in the vicinity of a reference point in parameter space where the estimator is trained. The training exploits per-event information of likelihood ratios for different theory parameter values, available in the simulated EFT data sets.arXiv:2107.10859oai:cds.cern.ch:27769402021-07-22 |
spellingShingle | hep-ph Particle Physics - Phenomenology Chatterjee, Suman Frohner, Nikolaus Lechner, Lukas Schöfbeck, Robert Schwarz, Dennis Tree boosting for learning EFT parameters |
title | Tree boosting for learning EFT parameters |
title_full | Tree boosting for learning EFT parameters |
title_fullStr | Tree boosting for learning EFT parameters |
title_full_unstemmed | Tree boosting for learning EFT parameters |
title_short | Tree boosting for learning EFT parameters |
title_sort | tree boosting for learning eft parameters |
topic | hep-ph Particle Physics - Phenomenology |
url | http://cds.cern.ch/record/2776940 |
work_keys_str_mv | AT chatterjeesuman treeboostingforlearningeftparameters AT frohnernikolaus treeboostingforlearningeftparameters AT lechnerlukas treeboostingforlearningeftparameters AT schofbeckrobert treeboostingforlearningeftparameters AT schwarzdennis treeboostingforlearningeftparameters |