Cargando…

Tree boosting for learning EFT parameters

We present a new tree boosting algorithm designed for the measurement of parameters in the context of effective field theory (EFT). To construct the algorithm, we interpret the optimized loss function of a traditional decision tree as the maximal Fisher information in Poisson counting experiments. W...

Descripción completa

Detalles Bibliográficos
Autores principales: Chatterjee, Suman, Frohner, Nikolaus, Lechner, Lukas, Schöfbeck, Robert, Schwarz, Dennis
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:http://cds.cern.ch/record/2776940
_version_ 1780971651381329920
author Chatterjee, Suman
Frohner, Nikolaus
Lechner, Lukas
Schöfbeck, Robert
Schwarz, Dennis
author_facet Chatterjee, Suman
Frohner, Nikolaus
Lechner, Lukas
Schöfbeck, Robert
Schwarz, Dennis
author_sort Chatterjee, Suman
collection CERN
description We present a new tree boosting algorithm designed for the measurement of parameters in the context of effective field theory (EFT). To construct the algorithm, we interpret the optimized loss function of a traditional decision tree as the maximal Fisher information in Poisson counting experiments. We promote the interpretation to general EFT predictions and develop a suitable boosting method. The resulting "Boosted Information Tree" algorithm approximates the score, the derivative of the log-likelihood function with respect to the parameter. It thus provides a sufficient statistic in the vicinity of a reference point in parameter space where the estimator is trained. The training exploits per-event information of likelihood ratios for different theory parameter values, available in the simulated EFT data sets.
id cern-2776940
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-27769402021-12-17T09:00:57Zhttp://cds.cern.ch/record/2776940engChatterjee, SumanFrohner, NikolausLechner, LukasSchöfbeck, RobertSchwarz, DennisTree boosting for learning EFT parametershep-phParticle Physics - PhenomenologyWe present a new tree boosting algorithm designed for the measurement of parameters in the context of effective field theory (EFT). To construct the algorithm, we interpret the optimized loss function of a traditional decision tree as the maximal Fisher information in Poisson counting experiments. We promote the interpretation to general EFT predictions and develop a suitable boosting method. The resulting "Boosted Information Tree" algorithm approximates the score, the derivative of the log-likelihood function with respect to the parameter. It thus provides a sufficient statistic in the vicinity of a reference point in parameter space where the estimator is trained. The training exploits per-event information of likelihood ratios for different theory parameter values, available in the simulated EFT data sets.arXiv:2107.10859oai:cds.cern.ch:27769402021-07-22
spellingShingle hep-ph
Particle Physics - Phenomenology
Chatterjee, Suman
Frohner, Nikolaus
Lechner, Lukas
Schöfbeck, Robert
Schwarz, Dennis
Tree boosting for learning EFT parameters
title Tree boosting for learning EFT parameters
title_full Tree boosting for learning EFT parameters
title_fullStr Tree boosting for learning EFT parameters
title_full_unstemmed Tree boosting for learning EFT parameters
title_short Tree boosting for learning EFT parameters
title_sort tree boosting for learning eft parameters
topic hep-ph
Particle Physics - Phenomenology
url http://cds.cern.ch/record/2776940
work_keys_str_mv AT chatterjeesuman treeboostingforlearningeftparameters
AT frohnernikolaus treeboostingforlearningeftparameters
AT lechnerlukas treeboostingforlearningeftparameters
AT schofbeckrobert treeboostingforlearningeftparameters
AT schwarzdennis treeboostingforlearningeftparameters