Cargando…
Tree boosting for learning EFT parameters
We present a new tree boosting algorithm designed for the measurement of parameters in the context of effective field theory (EFT). To construct the algorithm, we interpret the optimized loss function of a traditional decision tree as the maximal Fisher information in Poisson counting experiments. W...
Autores principales: | Chatterjee, Suman, Frohner, Nikolaus, Lechner, Lukas, Schöfbeck, Robert, Schwarz, Dennis |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2776940 |
Ejemplares similares
-
Parametrized classifiers for optimal EFT sensitivity
por: Chen, Siyu, et al.
Publicado: (2020) -
On-shell Higgsing for EFTs
por: Balkin, Reuven, et al.
Publicado: (2021) -
EFT at FASER$\nu$
por: Falkowski, Adam, et al.
Publicado: (2021) -
Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach
por: Grazzini, Massimiliano, et al.
Publicado: (2016) -
Dark Matter Freeze-In with a Heavy Mediator: Beyond the EFT Approach
por: Frangipane, Evan, et al.
Publicado: (2021)