Cargando…
Mass regression of highly-boosted jets using graph neural networks
In this note a novel technique is presented, based on machine learning (ML), to reconstruct the mass of hadronically decaying highly Lorentz-boosted heavy particles with the CMS Phase 1 detector. The technique, commonly known as mass regression, is based on ParticleNet [1-3], a graph neural network...
Autor principal: | CMS Collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2777006 |
Ejemplares similares
-
Identification of highly Lorentz-boosted heavy particles using graph neural networks and new mass decorrelation techniques
por: CMS Collaboration
Publicado: (2020) -
Boosted jet identification using particle candidates and deep neural networks
por: CMS Collaboration
Publicado: (2017) -
Calibration of the Jet Mass Scale using boosted W bosons and top quarks
por: CMS Collaboration
Publicado: (2023) -
High Granularity Calorimeter Reconstruction Results using a Graph Neural Network
por: CMS Collaboration
Publicado: (2022) -
Efficiency parametrization of b-tagging classifier using Graph Neural Networks
por: CMS Collaboration
Publicado: (2022)