Cargando…
Toward Machine Learning Optimization of Experimental Design
The effective design of instruments that rely on the interaction of radiation with matter for their operation is a complex task. A full optimization of the many parameters involved may still be sought by leveraging recent progress in computer science. Key to such a goal is the definition of a utilit...
Autores principales: | Baydin, Atılım Güneş, Cranmer, Kyle, De Castro Manzano, Pablo, Delaere, Christophe, Derkach, Denis, Donini, Julien, Dorigo, Tommaso, Giammanco, Andrea, Kieseler, Jan, Layer, Lukas, Louppe, Gilles, Ratnikov, Fedor, Strong, Giles, Tosi, Mia, Ustyuzhanin, Andrey, Vischia, Pietro, Yarar, Hevjin |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1080/10619127.2021.1881364 http://cds.cern.ch/record/2777356 |
Ejemplares similares
-
Exploiting Differentiable Programming for the End-to-end Optimization of Detectors
por: Aehle, Max, et al.
Publicado: (2022) -
Toward the end-to-end optimization of particle physics instruments with differentiable programming
por: Dorigo, Tommaso, et al.
Publicado: (2022) -
Muon Energy Measurement from Radiative Losses in a Calorimeter for a Collider Detector
por: Dorigo, Tommaso, et al.
Publicado: (2020) -
Deep Regression of Muon Energy with a K-Nearest Neighbor Algorithm
por: Dorigo, Tommaso, et al.
Publicado: (2022) -
Calorimetric Measurement of Multi-TeV Muons via Deep Regression
por: Kieseler, Jan, et al.
Publicado: (2021)