Cargando…
Source-Agnostic Gravitational-Wave Detection with Recurrent Autoencoders
We present an application of anomaly detection techniques based on deep recurrent autoencoders (AEs) to the problem of detecting gravitational wave (GW) signals in laser interferometers. Trained on noise data, this class of algorithms could detect signals using an unsupervised strategy, i.e. without...
Autores principales: | Moreno, Eric A., Borzyszkowski, Bartlomiej, Pierini, Maurizio, Vlimant, Jean-Roch, Spiropulu, Maria |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/2632-2153/ac5435 http://cds.cern.ch/record/2777883 |
Ejemplares similares
-
Accelerating Recurrent Neural Networks for Gravitational Wave Experiments
por: Que, Zhiqiang, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Automated visual inspection of CMS HGCAL silicon sensor surface using an ensemble of a deep convolutional autoencoder and classifier
por: Grönroos, Sonja, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
por: Tsan, Steven, et al.
Publicado: (2021)