Cargando…
Performance of the ALICE Luminosity Leveling Software Architecture in the Pb-Pb Physics Run
Luminosity leveling is performed in the ALICE experiment of the Large Hadron Collider (LHC) in order to limit the event pile-up probability, and ensure a safe operation for the detectors. It will be even more important during Run 3 when 50 KHz Pb ion-Pb ion (Pb-Pb) collisions will be delivered in IP...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-ICALEPCS2019-MOMPR006 http://cds.cern.ch/record/2778540 |
Sumario: | Luminosity leveling is performed in the ALICE experiment of the Large Hadron Collider (LHC) in order to limit the event pile-up probability, and ensure a safe operation for the detectors. It will be even more important during Run 3 when 50 KHz Pb ion-Pb ion (Pb-Pb) collisions will be delivered in IP2. On the ALICE side, it is handled by the ALICE-LHC Interface project, which also ensures an online data exchange between ALICE and the LHC. An automated luminosity leveling algorithm was developed for the proton-proton physics run, and was also deployed for the Pb-Pb run with some minor changes following experience gained. The algorithm is implemented in the SIMATIC WinCC SCADA environment, and determines the leveling step from measured beam parameters received from the LHC, and the luminosity recorded by ALICE. In this paper, the software architecture of the luminosity leveling software is presented, and the performance achieved during the Pb-Pb run and Van der Meer scans is discussed. |
---|