Cargando…
Convolutional LSTM models to estimate network traffic
Network utilisation efficiency can, at least in principle, often be improved by dynamically re-configuring routing policies to better distribute ongoing large data transfers. Unfortunately, the information necessary to decide on an appropriate reconfiguration—details of on-going and upcoming data tr...
Autores principales: | Waczynska, Joanna, Martelli, Edoardo, Vallecorsa, Sofia, Karavakis, Edward, Cass, Tony |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125102050 http://cds.cern.ch/record/2779150 |
Ejemplares similares
-
NOTED: a framework to optimise network traffic via the analysis of data from File Transfer Services
por: Waczyńska, Joanna, et al.
Publicado: (2021) -
Compressing deep neural networks on FPGAs to binary and ternary precision with HLS4ML
por: Loncar, Vladimir, et al.
Publicado: (2021) -
Convolutional LSTM models to estimate network traffic
por: Waczynska, Joanna
Publicado: (2021) -
WLCG Networks: Update on Monitoring and Analytics
por: Babik, Marian, et al.
Publicado: (2020) -
Scanning Test System Prototype of p/sFEB for the ATLAS Phase-I sTGC Trigger Upgrade
por: Wang, Xinxin, et al.
Publicado: (2018)