Cargando…

Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider

In this paper, we show how to adapt and deploy anomaly detection algorithms based on deep autoencoders, for the unsupervised detection of new physics signatures in the extremely challenging environment of a real-time event selection system at the Large Hadron Collider (LHC). We demonstrate that new...

Descripción completa

Detalles Bibliográficos
Autores principales: Govorkova, Ekaterina, Puljak, Ema, Aarrestad, Thea, James, Thomas, Loncar, Vladimir, Pierini, Maurizio, Pol, Adrian Alan, Ghielmetti, Nicolò, Graczyk, Maksymilian, Summers, Sioni, Ngadiuba, Jennifer, Nguyen, Thong Q., Duarte, Javier, Wu, Zhenbin
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:https://dx.doi.org/10.1038/s42256-022-00441-3
http://cds.cern.ch/record/2779339
_version_ 1780971792428433408
author Govorkova, Ekaterina
Puljak, Ema
Aarrestad, Thea
James, Thomas
Loncar, Vladimir
Pierini, Maurizio
Pol, Adrian Alan
Ghielmetti, Nicolò
Graczyk, Maksymilian
Summers, Sioni
Ngadiuba, Jennifer
Nguyen, Thong Q.
Duarte, Javier
Wu, Zhenbin
author_facet Govorkova, Ekaterina
Puljak, Ema
Aarrestad, Thea
James, Thomas
Loncar, Vladimir
Pierini, Maurizio
Pol, Adrian Alan
Ghielmetti, Nicolò
Graczyk, Maksymilian
Summers, Sioni
Ngadiuba, Jennifer
Nguyen, Thong Q.
Duarte, Javier
Wu, Zhenbin
author_sort Govorkova, Ekaterina
collection CERN
description In this paper, we show how to adapt and deploy anomaly detection algorithms based on deep autoencoders, for the unsupervised detection of new physics signatures in the extremely challenging environment of a real-time event selection system at the Large Hadron Collider (LHC). We demonstrate that new physics signatures can be enhanced by three orders of magnitude, while staying within the strict latency and resource constraints of a typical LHC event filtering system. This would allow for collecting datasets potentially enriched with high-purity contributions from new physics processes. Through per-layer, highly parallel implementations of network layers, support for autoencoder-specific losses on FPGAs and latent space based inference, we demonstrate that anomaly detection can be performed in as little as $80\,$ns using less than 3% of the logic resources in the Xilinx Virtex VU9P FPGA. Opening the way to real-life applications of this idea during the next data-taking campaign of the LHC.
id cern-2779339
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-27793392023-01-31T08:14:44Zdoi:10.1038/s42256-022-00441-3http://cds.cern.ch/record/2779339engGovorkova, EkaterinaPuljak, EmaAarrestad, TheaJames, ThomasLoncar, VladimirPierini, MaurizioPol, Adrian AlanGhielmetti, NicolòGraczyk, MaksymilianSummers, SioniNgadiuba, JenniferNguyen, Thong Q.Duarte, JavierWu, ZhenbinAutoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Colliderhep-exParticle Physics - Experimentphysics.ins-detDetectors and Experimental TechniquesIn this paper, we show how to adapt and deploy anomaly detection algorithms based on deep autoencoders, for the unsupervised detection of new physics signatures in the extremely challenging environment of a real-time event selection system at the Large Hadron Collider (LHC). We demonstrate that new physics signatures can be enhanced by three orders of magnitude, while staying within the strict latency and resource constraints of a typical LHC event filtering system. This would allow for collecting datasets potentially enriched with high-purity contributions from new physics processes. Through per-layer, highly parallel implementations of network layers, support for autoencoder-specific losses on FPGAs and latent space based inference, we demonstrate that anomaly detection can be performed in as little as $80\,$ns using less than 3% of the logic resources in the Xilinx Virtex VU9P FPGA. Opening the way to real-life applications of this idea during the next data-taking campaign of the LHC.arXiv:2108.03986FERMILAB-PUB-21-487-CMSFERMILAB-PUB-21-487-CMSoai:cds.cern.ch:27793392021-08-09
spellingShingle hep-ex
Particle Physics - Experiment
physics.ins-det
Detectors and Experimental Techniques
Govorkova, Ekaterina
Puljak, Ema
Aarrestad, Thea
James, Thomas
Loncar, Vladimir
Pierini, Maurizio
Pol, Adrian Alan
Ghielmetti, Nicolò
Graczyk, Maksymilian
Summers, Sioni
Ngadiuba, Jennifer
Nguyen, Thong Q.
Duarte, Javier
Wu, Zhenbin
Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
title Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
title_full Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
title_fullStr Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
title_full_unstemmed Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
title_short Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
title_sort autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 mhz at the large hadron collider
topic hep-ex
Particle Physics - Experiment
physics.ins-det
Detectors and Experimental Techniques
url https://dx.doi.org/10.1038/s42256-022-00441-3
http://cds.cern.ch/record/2779339
work_keys_str_mv AT govorkovaekaterina autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT puljakema autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT aarrestadthea autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT jamesthomas autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT loncarvladimir autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT pierinimaurizio autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT poladrianalan autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT ghielmettinicolo autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT graczykmaksymilian autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT summerssioni autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT ngadiubajennifer autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT nguyenthongq autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT duartejavier autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider
AT wuzhenbin autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider