Cargando…
Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
In this paper, we show how to adapt and deploy anomaly detection algorithms based on deep autoencoders, for the unsupervised detection of new physics signatures in the extremely challenging environment of a real-time event selection system at the Large Hadron Collider (LHC). We demonstrate that new...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1038/s42256-022-00441-3 http://cds.cern.ch/record/2779339 |
_version_ | 1780971792428433408 |
---|---|
author | Govorkova, Ekaterina Puljak, Ema Aarrestad, Thea James, Thomas Loncar, Vladimir Pierini, Maurizio Pol, Adrian Alan Ghielmetti, Nicolò Graczyk, Maksymilian Summers, Sioni Ngadiuba, Jennifer Nguyen, Thong Q. Duarte, Javier Wu, Zhenbin |
author_facet | Govorkova, Ekaterina Puljak, Ema Aarrestad, Thea James, Thomas Loncar, Vladimir Pierini, Maurizio Pol, Adrian Alan Ghielmetti, Nicolò Graczyk, Maksymilian Summers, Sioni Ngadiuba, Jennifer Nguyen, Thong Q. Duarte, Javier Wu, Zhenbin |
author_sort | Govorkova, Ekaterina |
collection | CERN |
description | In this paper, we show how to adapt and deploy anomaly detection algorithms based on deep autoencoders, for the unsupervised detection of new physics signatures in the extremely challenging environment of a real-time event selection system at the Large Hadron Collider (LHC). We demonstrate that new physics signatures can be enhanced by three orders of magnitude, while staying within the strict latency and resource constraints of a typical LHC event filtering system. This would allow for collecting datasets potentially enriched with high-purity contributions from new physics processes. Through per-layer, highly parallel implementations of network layers, support for autoencoder-specific losses on FPGAs and latent space based inference, we demonstrate that anomaly detection can be performed in as little as $80\,$ns using less than 3% of the logic resources in the Xilinx Virtex VU9P FPGA. Opening the way to real-life applications of this idea during the next data-taking campaign of the LHC. |
id | cern-2779339 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27793392023-01-31T08:14:44Zdoi:10.1038/s42256-022-00441-3http://cds.cern.ch/record/2779339engGovorkova, EkaterinaPuljak, EmaAarrestad, TheaJames, ThomasLoncar, VladimirPierini, MaurizioPol, Adrian AlanGhielmetti, NicolòGraczyk, MaksymilianSummers, SioniNgadiuba, JenniferNguyen, Thong Q.Duarte, JavierWu, ZhenbinAutoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Colliderhep-exParticle Physics - Experimentphysics.ins-detDetectors and Experimental TechniquesIn this paper, we show how to adapt and deploy anomaly detection algorithms based on deep autoencoders, for the unsupervised detection of new physics signatures in the extremely challenging environment of a real-time event selection system at the Large Hadron Collider (LHC). We demonstrate that new physics signatures can be enhanced by three orders of magnitude, while staying within the strict latency and resource constraints of a typical LHC event filtering system. This would allow for collecting datasets potentially enriched with high-purity contributions from new physics processes. Through per-layer, highly parallel implementations of network layers, support for autoencoder-specific losses on FPGAs and latent space based inference, we demonstrate that anomaly detection can be performed in as little as $80\,$ns using less than 3% of the logic resources in the Xilinx Virtex VU9P FPGA. Opening the way to real-life applications of this idea during the next data-taking campaign of the LHC.arXiv:2108.03986FERMILAB-PUB-21-487-CMSFERMILAB-PUB-21-487-CMSoai:cds.cern.ch:27793392021-08-09 |
spellingShingle | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques Govorkova, Ekaterina Puljak, Ema Aarrestad, Thea James, Thomas Loncar, Vladimir Pierini, Maurizio Pol, Adrian Alan Ghielmetti, Nicolò Graczyk, Maksymilian Summers, Sioni Ngadiuba, Jennifer Nguyen, Thong Q. Duarte, Javier Wu, Zhenbin Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider |
title | Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider |
title_full | Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider |
title_fullStr | Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider |
title_full_unstemmed | Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider |
title_short | Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider |
title_sort | autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 mhz at the large hadron collider |
topic | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1038/s42256-022-00441-3 http://cds.cern.ch/record/2779339 |
work_keys_str_mv | AT govorkovaekaterina autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT puljakema autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT aarrestadthea autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT jamesthomas autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT loncarvladimir autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT pierinimaurizio autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT poladrianalan autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT ghielmettinicolo autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT graczykmaksymilian autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT summerssioni autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT ngadiubajennifer autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT nguyenthongq autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT duartejavier autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider AT wuzhenbin autoencodersonfieldprogrammablegatearraysforrealtimeunsupervisednewphysicsdetectionat40mhzatthelargehadroncollider |