Cargando…
Influence of Fake Track Rejection on Large-Radius Unified Flow Object Jet Reconstruction and the Development of a Deep Neural Network to Optimize High-p$_T$ Cluster Energy Extrapolation
This report summarizes my work studying the influence of fake tracks on jet reconstruction using Unified Flow Objects as inputs to the anti-k$_T$ algorithm for the ATLAS Collaboration. High-p$_T$ and dense environments can lead to degraded performance in reconstruction, resulting in an increase in f...
Autores principales: | Sturge, Kathryn, Roloff, Jennifer Kathryn |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2779420 |
Ejemplares similares
-
Fast neural-net based fake track rejection in the LHCb reconstruction
por: De Cian, Michel, et al.
Publicado: (2017) -
Understanding and Improving Particle Flow Reconstruction with Simplified Track Extrapolation
por: Skrzypek, Barbara
Publicado: (2016) -
Optimal jet radius in kinematic dijet reconstruction
por: Soyez, Gregory
Publicado: (2010) -
d=4 Attractors, Effective Horizon Radius and Fake Supergravity
por: Ferrara, Sergio, et al.
Publicado: (2008) -
Jet Rejection for Electrons and Photons Using Track Isolation
por: Voutilainen, Mikko, et al.
Publicado: (2004)