Cargando…
Study on $ H\rightarrow b\bar b $ tagger Robustness against Changes in QCD Background Generation
A neural network is used to tag large-radius jets as originating from a $H\rightarrow b\bar b$ decay. This study shows that the performance of the tagger is dependent on the MC generator used to generate the training samples. Alternative training setups are investigated to mitigate this effect.
Autor principal: | Vestner, Augustin |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2779989 |
Ejemplares similares
-
Boosted $H\rightarrow b \bar{b}$ Tagger in Run II
por: Sahinsoy, Merve
Publicado: (2016) -
Calibration of the Boosted $X\rightarrow b\bar{b}$ Tagger in $g\rightarrow b\bar{b}$ splitting events at the ATLAS Experiment
por: Stankaityte, Migle, et al.
Publicado: (2019) -
The boosted $X\rightarrow b\bar{b}$ tagger calibration using $Z\rightarrow b\bar{b}$ events collected with the ATLAS detector
por: Battulga, Daariimaa
Publicado: (2022) -
The boosted $X\rightarrow b\bar{b} $ tagger calibration using $Z\rightarrow b\bar{b} $ events collected with the ATLAS detector
por: Battulga, Daariimaa
Publicado: (2022) -
Efficiency corrections for a tagger for boosted $H\rightarrow b\bar{b}$ decays in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector
por: The ATLAS collaboration
Publicado: (2021)