Cargando…
Accelerating GAN training using highly parallel hardware on public cloud
With the increasing number of Machine and Deep Learning applications in High Energy Physics, easy access to dedicated infrastructure represents a requirement for fast and efficient R&D. This work explores different types of cloud services to train a Generative Adversarial Network (GAN) in a para...
Autores principales: | Cardoso, Renato, Golubovic, Dejan, Lozada, Ignacio Peluaga, Rocha, Ricardo, Fernandes, João, Vallecorsa, Sofia |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125102073 http://cds.cern.ch/record/2780109 |
Ejemplares similares
-
Accelerating GAN training using highly parallel hardware on public cloud
por: Da Costa Cardoso, Renato Paulo
Publicado: (2021) -
ARCHIVER - Data archiving and preservation for research environments
por: Devouassoux, Marion, et al.
Publicado: (2021) -
Training and Serving ML workloads with Kubeflow at CERN
por: Golubovic, Dejan, et al.
Publicado: (2021) -
Adapting algorithms to massively parallel hardware
por: Sioulas, Panagiotis
Publicado: (2016) -
Running the Dual-PQC GAN on noisy simulators and real quantum hardware
por: Chang, Su Yeon, et al.
Publicado: (2023)