Cargando…
Prediction of RPC efficiency using machine learning techniques
In this work, K-NN classification and regression models are used to estimate the efficiency for the Resistive Plate Chambers (RPC) of the Compact Muon Solenoid (CMS), one of the Large Hadron Collider (LHC) experiments located at CERN between the French and Swiss border. Measurable detector quantitie...
Autor principal: | Abbasgholinejadkhamirgir, Erfan |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2780387 |
Ejemplares similares
-
Predicting RPC efficiency using machine learning and deep learning models
por: Michelevicius, Mikas
Publicado: (2021) -
New algortihm for HSCP detection at the high η region for the new RPC detectors in the CMS RPC Phase-2 upgrade
por: Calderon Garcia, Juan Sebastian
Publicado: (2018) -
The Phase-2 Upgrade of the CMS RPC Detectors
por: Amer, Gamal
Publicado: (2019) -
A new approach for CMS RPC current monitoring using Machine Learning techniques
por: Petkov, Peicho Stoev
Publicado: (2020) -
A new approach for CMS RPC current monitoring using Machine Learning techniques
por: CMS Collaboration
Publicado: (2020)