Cargando…
End-to-End Jet Classification of Boosted Top Quarks with CMS Open Data
We describe a novel application of the end-to-end deep learning technique to the task of discriminating top quark-initiated jets from those originating from the hadronization of a light quark or a gluon. The end-to-end deep learning technique combines deep learning algorithms and low-level detector...
Autores principales: | Andrews, Michael, Burkle, Bjorn, Chen, Yi-fan, DiCroce, Davide, Gleyzer, Sergei, Heintz, Ulrich, Narain, Meenakshi, Paulini, Manfred, Pervan, Nikolas, Shafi, Yusef, Sun, Wei, Usai, Emanuele, Yang, Kun |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125104030 https://dx.doi.org/10.1103/PhysRevD.105.052008 http://cds.cern.ch/record/2780774 |
Ejemplares similares
-
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
por: Andrews, M., et al.
Publicado: (2019) -
End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
por: Andrews, M., et al.
Publicado: (2018) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022)