Cargando…
BENCHMARKING OF ROOT BOOSTED DECISION TREES AND XGBOOST
ROOT is a data analysis framework used in many different experiments across CERN, and beyond. The TMVA library, which forms part of ROOT, is in particu- lar a machine learning toolkit for multivariate analysis. In particular, amongst its various machine learning tools, it provides a robust boosted de...
Autor principal: | Mifsud, Xandru |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2781067 |
Ejemplares similares
-
Hands-On Gradient Boosting with XGBoost and scikit-learn
por: Wade, Corey, et al.
Publicado: (2020) -
Using Boosted Decision Trees to Improve Tracking of Low PT Electrons
por: Mcblain, Warin Patrick
Publicado: (2018) -
A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh
por: Noorunnahar, Mst, et al.
Publicado: (2023) -
Optimization Studies for the H $\rightarrow$ WW Boosted Decision Tree Analysis
por: Strickland, Jessica
Publicado: (2014) -
Fast inference of Boosted Decision Trees in FPGAs for particle physics
por: Summers, Sioni, et al.
Publicado: (2020)