Cargando…
Tripartite information at long distances
We compute the leading term of the tripartite information at long distances for three spheres in a CFT. This falls as $r^{-6\Delta}$, where $r$ is the typical distance between the spheres, and $\Delta$, the lowest primary field dimension. The coefficient turns out to be a combination of terms coming...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.21468/SciPostPhys.12.5.153 http://cds.cern.ch/record/2781792 |
Sumario: | We compute the leading term of the tripartite information at long distances for three spheres in a CFT. This falls as $r^{-6\Delta}$, where $r$ is the typical distance between the spheres, and $\Delta$, the lowest primary field dimension. The coefficient turns out to be a combination of terms coming from the two- and three-point functions and depends on the OPE coefficient of the field. We check the result with three-dimensional free scalars in the lattice finding excellent agreement. When the lowest-dimensional field is a scalar, we find that the mutual information can be monogamous only for quite large OPE coefficients, far away from a perturbative regime. When the lowest-dimensional primary is a fermion, we argue that the scaling must always be faster than $r^{-6\Delta_f}$. In particular, lattice calculations suggest a leading scaling $ r^{-(6\Delta_f+1)}$. For free fermions in three dimensions, we show that mutual information is also non-monogamous in the long-distance regime. |
---|