Cargando…
Hysteresis Modeling in Iron-Dominated Magnets Based on a Multi-Layered NARX Neural Network Approach
A full-fledged neural network modeling, based on a Multi-layered Nonlinear Autoregressive Exogenous Neural Network (NARX) architecture, is proposed for quasi-static and dynamic hysteresis loops, one of the most challenging topics for computational magnetism. This modeling approach overcomes drawback...
Autores principales: | Amodeo, Maria, Arpaia, Pasquale, Buzio, Marco, Di Capua, Vincenzo, Donnarumma, Francesco |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/s0129065721500337 http://cds.cern.ch/record/2783200 |
Ejemplares similares
-
Integrator Drift Compensation of Magnetic Flux Transducers by Feed-Forward Correction
por: Amodeo, Maria, et al.
Publicado: (2019) -
Integrator Drift Compensation of Magnetic Flux Transducers by Feed-Forward Correction †
por: Amodeo, Maria, et al.
Publicado: (2019) -
Temperature prediction of solar greenhouse based on NARX regression neural network
por: Gao, Maosheng, et al.
Publicado: (2023) -
Drift-Free Integration in Inductive Magnetic Field Measurements Achieved by Kalman Filtering
por: Arpaia, Pasquale, et al.
Publicado: (2022) -
Drift-Free Integration in Inductive Magnetic Field Measurements Achieved by Kalman Filtering
por: Arpaia, Pasquale, et al.
Publicado: (2021)