Cargando…
Optics Configurations for Improved Machine Impedance and Cleaning Performance of a Multi-Stage Collimation Insertion
For a two-stage collimation system, the betatron phase advance between the primary and secondary stages is usually set to maximise the absorption of secondary particles outscattered from the primary. Another constraint is the contribution to the ring impedance of the collimation system, which can be...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2021-MOPAB006 http://cds.cern.ch/record/2783796 |
Sumario: | For a two-stage collimation system, the betatron phase advance between the primary and secondary stages is usually set to maximise the absorption of secondary particles outscattered from the primary. Another constraint is the contribution to the ring impedance of the collimation system, which can be decreased through an optimized insertion optics, featuring large values of the beta functions. In this article we report on first studies of such an optics for the CERN LHC. In addition to a gain in impedance, we show that the cleaning efficiency can be improved thanks to the large beta functions, even though the phase advance is not set at the theoretical optimum. |
---|