Cargando…
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
One of the major objectives of the experimental programs at the LHC is the discovery of new physics. This requires the identification of rare signals in immense backgrounds. Using machine learning algorithms greatly enhances our ability to achieve this objective. With the progress of quantum technol...
Autores principales: | Chan, Jay, Guan, Wen, Sun, Shaojun, Wang, Alex, Wu, Sau Lan, Zhou, Chen, Livny, Miron, Carminati, Federico, Meglio, Alberto Di, Li, Andy C Y, Lykken, Joseph, Spentzouris, Panagiotis, Chen, Samuel Yen-Chi, Yoo, Shinjae, Wei, Tzu-Chieh |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.390.0930 http://cds.cern.ch/record/2783944 |
Ejemplares similares
-
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
por: Chan, Jay, et al.
Publicado: (2019) -
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
por: Chan, Jay, et al.
Publicado: (2020) -
Application of Quantum Machine Learning using the Quantum Variational Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum Computer Simulator and Hardware with 10 qubits
por: Wu, Sau Lan, et al.
Publicado: (2020) -
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC Using Quantum Computer Simulators and Quantum Computer Hardware
por: Wu, Sau Lan, et al.
Publicado: (2022) -
Practical quantum computing for developers: programming quantum rigs in the cloud using Python, Quantum Assembly Language and IBM QExperience
por: Silva, Vladimir
Publicado: (2018)