Cargando…
Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC
We develop a generative neural network for the generation of sparse data in particle physics using a permutation-invariant and physics-informed loss function. The input dataset used in this study consists of the particle constituents of hadronic jets due to its sparsity and the possibility of evalua...
Autores principales: | Orzari, Breno, Tomei, Thiago, Pierini, Maurizio, Touranakou, Mary, Duarte, Javier, Kansal, Raghav, Vlimant, Jean-Roch, Gunopulos, Dimitrios |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2784343 |
Ejemplares similares
-
Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
por: Kansal, Raghav, et al.
Publicado: (2020) -
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
por: Touranakou, Mary, et al.
Publicado: (2022) -
Particle Cloud Generation with Message Passing Generative Adversarial Networks
por: Kansal, Raghav, et al.
Publicado: (2021) -
Evaluating generative models in high energy physics
por: Kansal, Raghav, et al.
Publicado: (2022) -
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
por: Tsan, Steven, et al.
Publicado: (2021)