Cargando…

Machine learning for top quark physics at the edge in LHC pp collisions with ATLAS and CMS

Illustration of most advanced and performant ML techniques used in top quark physics measurements: from top reconstruction to signal to background rejection methods to top-jet-tagging.

Detalles Bibliográficos
Autor principal: Nellist, Clara
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:http://cds.cern.ch/record/2784386
Descripción
Sumario:Illustration of most advanced and performant ML techniques used in top quark physics measurements: from top reconstruction to signal to background rejection methods to top-jet-tagging.