Cargando…
Machine learning for top quark physics at the edge in LHC pp collisions with ATLAS and CMS
Illustration of most advanced and performant ML techniques used in top quark physics measurements: from top reconstruction to signal to background rejection methods to top-jet-tagging.
Autor principal: | Nellist, Clara |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2784386 |
Ejemplares similares
-
Top-quark physics in ATLAS and CMS
por: Cristinziani, Markus
Publicado: (2023) -
Testing the EFT paradigm with top quark final states in pp collisions at LHC with ATLAS and CMS
por: Schwarz, Dennis
Publicado: (2021) -
Top quark angular correlations at the LHC with ATLAS and CMS
por: Howarth, James William
Publicado: (2021) -
Search for a Heavy Top-like Quark Pairs at CMS in pp Collisions
por: CMS Collaboration
Publicado: (2011) -
Measurements of single top-quark production in pp collisions by the CMS experiment
por: Popov, Andrey
Publicado: (2014)