Cargando…

Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows

We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event represe...

Descripción completa

Detalles Bibliográficos
Autores principales: Jawahar, Pratik, Aarrestad, Thea, Chernyavskaya, Nadezda, Pierini, Maurizio, Wozniak, Kinga A., Ngadiuba, Jennifer, Duarte, Javier, Tsan, Steven
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:https://dx.doi.org/10.3389/fdata.2022.803685
http://cds.cern.ch/record/2784906
_version_ 1780972111536324608
author Jawahar, Pratik
Aarrestad, Thea
Chernyavskaya, Nadezda
Pierini, Maurizio
Wozniak, Kinga A.
Ngadiuba, Jennifer
Duarte, Javier
Tsan, Steven
author_facet Jawahar, Pratik
Aarrestad, Thea
Chernyavskaya, Nadezda
Pierini, Maurizio
Wozniak, Kinga A.
Ngadiuba, Jennifer
Duarte, Javier
Tsan, Steven
author_sort Jawahar, Pratik
collection CERN
description We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder.
id cern-2784906
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-27849062023-07-27T08:30:21Zdoi:10.3389/fdata.2022.803685http://cds.cern.ch/record/2784906engJawahar, PratikAarrestad, TheaChernyavskaya, NadezdaPierini, MaurizioWozniak, Kinga A.Ngadiuba, JenniferDuarte, JavierTsan, StevenImproving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flowsphysics.data-anOther Fields of Physicshep-exParticle Physics - Experimenthep-phParticle Physics - PhenomenologyWe investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder.We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder.arXiv:2110.08508FERMILAB-PUB-21-519-CMSoai:cds.cern.ch:27849062021-10-16
spellingShingle physics.data-an
Other Fields of Physics
hep-ex
Particle Physics - Experiment
hep-ph
Particle Physics - Phenomenology
Jawahar, Pratik
Aarrestad, Thea
Chernyavskaya, Nadezda
Pierini, Maurizio
Wozniak, Kinga A.
Ngadiuba, Jennifer
Duarte, Javier
Tsan, Steven
Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
title Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
title_full Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
title_fullStr Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
title_full_unstemmed Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
title_short Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
title_sort improving variational autoencoders for new physics detection at the lhc with normalizing flows
topic physics.data-an
Other Fields of Physics
hep-ex
Particle Physics - Experiment
hep-ph
Particle Physics - Phenomenology
url https://dx.doi.org/10.3389/fdata.2022.803685
http://cds.cern.ch/record/2784906
work_keys_str_mv AT jawaharpratik improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT aarrestadthea improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT chernyavskayanadezda improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT pierinimaurizio improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT wozniakkingaa improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT ngadiubajennifer improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT duartejavier improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT tsansteven improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows