Cargando…
Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event represe...
Autores principales: | Jawahar, Pratik, Aarrestad, Thea, Chernyavskaya, Nadezda, Pierini, Maurizio, Wozniak, Kinga A., Ngadiuba, Jennifer, Duarte, Javier, Tsan, Steven |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3389/fdata.2022.803685 http://cds.cern.ch/record/2784906 |
Ejemplares similares
-
Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
por: Jawahar, Pratik, et al.
Publicado: (2022) -
LHC physics dataset for unsupervised New Physics detection at 40 MHz
por: Govorkova, Ekaterina, et al.
Publicado: (2021) -
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
por: Touranakou, Mary, et al.
Publicado: (2022) -
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
por: Tsan, Steven, et al.
Publicado: (2021) -
Detecting long-lived particles trapped in detector material at the LHC
por: Kieseler, Jan, et al.
Publicado: (2021)