Cargando…
Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event represe...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.3389/fdata.2022.803685 http://cds.cern.ch/record/2784906 |
Search Result 1
Enlace del recurso
Enlace del recurso
por Jawahar, Pratik, Aarrestad, Thea, Chernyavskaya, Nadezda, Pierini, Maurizio, Wozniak, Kinga A., Ngadiuba, Jennifer, Duarte, Javier, Tsan, Steven
Publicado 2022
Enlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online
Artículo
Texto