Cargando…
MACHINE LEARNING FOR REAL-TIME PROCESSING OF ATLAS LIQUID ARGON CALORIMETER SIGNALS WITH FPGAS
The ATLAS experiment at CERN measures energy of proton–proton (P-P) collisions with a repetition frequency of 40 MHz at the Large Hadron Collider (LHC). The readout electronics of liquid-argon (LAr) calorimeters, developed by ATLAS, are being readied for high luminosity-LHC (HL-LHC) operation as par...
Autor principal: | Chiedde, Nemer |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2788567 |
Ejemplares similares
-
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Chiedde, Nemer
Publicado: (2023) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Chiedde, Nemer
Publicado: (2021) -
Machine learning for real-time processing of ATLAS liquid argon calorimeter signals with FPGAs
por: Chiedde, Nemer
Publicado: (2021) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Aad, Georges, et al.
Publicado: (2022) -
Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs
por: Fortin, Etienne Marie
Publicado: (2021)