Cargando…
Implementation of machine learning techniques to predict impact parameter and transverse spherocity in heavy-ion collisions at the LHC
Machine learning techniques have been quite popular recently in the high-energy physics community and have led to numerous developments in this field. In heavy-ion collisions, one of the crucial observables, the impact parameter, plays an important role in the final-state particle production. This b...
Autores principales: | Mishra, Aditya Nath, Mallick, Neelkamal, Tripathy, Sushanta, Deb, Suman, Sahoo, Raghunath |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.397.0265 http://cds.cern.ch/record/2788682 |
Ejemplares similares
-
Estimation of Impact Parameter and Transverse Spherocity in heavy-ion collisions at the LHC energies using Machine Learning
por: Mallick, Neelkamal, et al.
Publicado: (2021) -
Transverse spherocity dependence of azimuthal anisotropy in heavy-ion collisions at the LHC using a multi-phase transport model
por: Mallick, Neelkamal, et al.
Publicado: (2021) -
Investigating radial-flow-like effects via pseudorapidity and transverse spherocity dependence of particle production in pp collisions at the LHC
por: R, Aswathy Menon K., et al.
Publicado: (2023) -
Estimation of impact parameter and transverse spherocity in heavy-ion collisions at the LHC using machine learning techniques
por: Mallick, Neelkamal, et al.
Publicado: (2022) -
Event topology and constituent-quark scaling of elliptic flow in heavy-ion collisions at the Large Hadron Collider using a multiphase transport model
por: Mallick, Neelkamal, et al.
Publicado: (2021)