Cargando…
Binary classifiers for noisy datasets: a comparative study of existing quantum machine learning frameworks and some new approaches
One of the most promising areas of research to obtain practical advantage is Quantum Machine Learning which was born as a result of cross-fertilisation of ideas between Quantum Computing and Classical Machine Learning. In this paper, we apply Quantum Machine Learning (QML) frameworks to improve bina...
Autores principales: | Schetakis, N., Aghamalyan, D., Boguslavsky, M., Griffin, P. |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2790049 |
Ejemplares similares
-
Review of some existing QML frameworks and novel hybrid classical–quantum neural networks realising binary classification for the noisy datasets
por: Schetakis, N., et al.
Publicado: (2022) -
A novel approach to noisy gates for simulating quantum computers
por: Di Bartolomeo, Giovanni, et al.
Publicado: (2023) -
Qibosoq: an open-source framework for quantum circuit RFSoC programming
por: Carobene, Rodolfo, et al.
Publicado: (2023) -
Bloch Sphere Binary Trees: A method for the visualization of sets of multi-qubit systems pure states
por: Barthe, Alice, et al.
Publicado: (2023) -
Precise Image Generation on Current Noisy Quantum Computing Devices
por: Rehm, Florian, et al.
Publicado: (2023)