Cargando…
Test-beam performance of a TORCH prototype module
The TORCH time-of-flight detector is designed to provide a 15 ps timing resolution for charged particles, resulting in $K/\pi$ $(p/K)$ particle identification up to momentum of about 10(15) GeV/$c$ over a 10 m flight distance. Cherenkov photons, produced in a quartz plate of 10 mm thickness, are foc...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.390.0854 http://cds.cern.ch/record/2790248 |
Sumario: | The TORCH time-of-flight detector is designed to provide a 15 ps timing resolution for charged particles, resulting in $K/\pi$ $(p/K)$ particle identification up to momentum of about 10(15) GeV/$c$ over a 10 m flight distance. Cherenkov photons, produced in a quartz plate of 10 mm thickness, are focused onto an array of micro-channel plate photomultipliers (MCP-PMTs) which measure the photon arrival times and spatial positions. A TORCH demonstrator module instrumented with a customised MCP-PMTs has been tested at the CERN PS. The useful implementation for the particle identification in the LHCb experiment requires single-photon time resolution of 70 ps. The timing performance and photon yields have been measured as a function of beam position in the radiator, giving measurements which are approaching the required resolution. A possible TORCH design of the particle identification system in the LHCb experiment has been simulated and its potential for high luminosity running has been evaluated. |
---|