Cargando…

Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$

Electroweak interactions assign a central role to the gauge group $SU(2)_L \times U(1)_Y$, which is either realized linearly (SMEFT) or nonlinearly (e.g., HEFT) in the effective theory obtained when new physics above the electroweak scale is integrated out. Although the discovery of the Higgs boson...

Descripción completa

Detalles Bibliográficos
Autores principales: Burgess, C.P., Hamoudou, Serge, Kumar, Jacky, London, David
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.105.073008
http://cds.cern.ch/record/2790741
_version_ 1780972264329576448
author Burgess, C.P.
Hamoudou, Serge
Kumar, Jacky
London, David
author_facet Burgess, C.P.
Hamoudou, Serge
Kumar, Jacky
London, David
author_sort Burgess, C.P.
collection CERN
description Electroweak interactions assign a central role to the gauge group $SU(2)_L \times U(1)_Y$, which is either realized linearly (SMEFT) or nonlinearly (e.g., HEFT) in the effective theory obtained when new physics above the electroweak scale is integrated out. Although the discovery of the Higgs boson has made SMEFT the default assumption, nonlinear realization remains possible. The two can be distinguished through their predictions for the size of certain low-energy dimension-6 four-fermion operators: for these, HEFT predicts $O(1)$ couplings, while in SMEFT they are suppressed by a factor $v^2/\Lambda_{\rm NP}^2$, where $v$ is the Higgs vev. One such operator, $O_V^{LR} \equiv ({\bar \tau} \gamma^\mu P_L \nu )\, ( {\bar c} \gamma_\mu P_R b )$, contributes to $b \to c \,\tau^- {\bar\nu}$. We show that present constraints permit its non-SMEFT coefficient to have a HEFTy size. We also note that the angular distribution in ${\bar B} \to D^* (\to D \pi') \, \tau^{-} (\to \pi^- \nu_\tau) {\bar\nu}_\tau$ contains enough information to extract the coefficients of all new-physics operators. Future measurements of this angular distribution can therefore tell us if non-SMEFT new physics is really necessary.
id cern-2790741
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-27907412023-01-31T08:31:06Zdoi:10.1103/PhysRevD.105.073008http://cds.cern.ch/record/2790741engBurgess, C.P.Hamoudou, SergeKumar, JackyLondon, DavidBeyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$hep-phParticle Physics - PhenomenologyElectroweak interactions assign a central role to the gauge group $SU(2)_L \times U(1)_Y$, which is either realized linearly (SMEFT) or nonlinearly (e.g., HEFT) in the effective theory obtained when new physics above the electroweak scale is integrated out. Although the discovery of the Higgs boson has made SMEFT the default assumption, nonlinear realization remains possible. The two can be distinguished through their predictions for the size of certain low-energy dimension-6 four-fermion operators: for these, HEFT predicts $O(1)$ couplings, while in SMEFT they are suppressed by a factor $v^2/\Lambda_{\rm NP}^2$, where $v$ is the Higgs vev. One such operator, $O_V^{LR} \equiv ({\bar \tau} \gamma^\mu P_L \nu )\, ( {\bar c} \gamma_\mu P_R b )$, contributes to $b \to c \,\tau^- {\bar\nu}$. We show that present constraints permit its non-SMEFT coefficient to have a HEFTy size. We also note that the angular distribution in ${\bar B} \to D^* (\to D \pi') \, \tau^{-} (\to \pi^- \nu_\tau) {\bar\nu}_\tau$ contains enough information to extract the coefficients of all new-physics operators. Future measurements of this angular distribution can therefore tell us if non-SMEFT new physics is really necessary.Electroweak interactions assign a central role to the gauge group <math display="inline"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mn>2</mn><msub><mo stretchy="false">)</mo><mi>L</mi></msub><mo>×</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo><mi>Y</mi></msub></math>, which is either realized linearly (SMEFT) or nonlinearly (e.g., HEFT) in the effective theory obtained when new physics above the electroweak scale is integrated out. Although the discovery of the Higgs boson has made SMEFT the default assumption, nonlinear realization remains possible. The two can be distinguished through their predictions for the size of certain low-energy dimension-6 four-fermion operators: for these, HEFT predicts <math display="inline"><mi>O</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></math> couplings, while in SMEFT they are suppressed by a factor <math display="inline"><msup><mi>v</mi><mn>2</mn></msup><mo stretchy="false">/</mo><msubsup><mi mathvariant="normal">Λ</mi><mrow><mi>NP</mi></mrow><mn>2</mn></msubsup></math>, where <math display="inline"><mi>v</mi></math> is the Higgs vev. One such operator, <math display="inline"><msubsup><mi>O</mi><mi>V</mi><mrow><mi>L</mi><mi>R</mi></mrow></msubsup><mo>≡</mo><mo stretchy="false">(</mo><mover accent="true"><mi>τ</mi><mo stretchy="false">¯</mo></mover><msup><mi>γ</mi><mi>μ</mi></msup><msub><mi>P</mi><mi>L</mi></msub><mi>ν</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mover accent="true"><mi>c</mi><mo stretchy="false">¯</mo></mover><msub><mi>γ</mi><mi>μ</mi></msub><msub><mi>P</mi><mi>R</mi></msub><mi>b</mi><mo stretchy="false">)</mo></math>, contributes to <math display="inline"><mi>b</mi><mo stretchy="false">→</mo><mi>c</mi><msup><mi>τ</mi><mo>-</mo></msup><mover accent="true"><mi>ν</mi><mo stretchy="false">¯</mo></mover></math>. We show that present constraints permit its non-SMEFT coefficient to have a HEFTy size. We also note that the angular distribution in <math display="inline"><mover accent="true"><mi>B</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">→</mo><msup><mi>D</mi><mo>*</mo></msup><mo stretchy="false">(</mo><mo stretchy="false">→</mo><mi>D</mi><msup><mi>π</mi><mo>′</mo></msup><mo stretchy="false">)</mo><msup><mi>τ</mi><mo>-</mo></msup><mo stretchy="false">(</mo><mo stretchy="false">→</mo><msup><mi>π</mi><mo>-</mo></msup><msub><mi>ν</mi><mi>τ</mi></msub><mo stretchy="false">)</mo><msub><mover accent="true"><mi>ν</mi><mo stretchy="false">¯</mo></mover><mi>τ</mi></msub></math> contains enough information to extract the coefficients of all new-physics operators. Future measurements of this angular distribution can therefore tell us if non-SMEFT new physics is really necessary.arXiv:2111.07421UdeM-GPP-TH-21-290oai:cds.cern.ch:27907412021-11-14
spellingShingle hep-ph
Particle Physics - Phenomenology
Burgess, C.P.
Hamoudou, Serge
Kumar, Jacky
London, David
Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$
title Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$
title_full Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$
title_fullStr Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$
title_full_unstemmed Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$
title_short Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$
title_sort beyond the standard model effective field theory with $b \rightarrow c \tau^- \overline{\nu}$
topic hep-ph
Particle Physics - Phenomenology
url https://dx.doi.org/10.1103/PhysRevD.105.073008
http://cds.cern.ch/record/2790741
work_keys_str_mv AT burgesscp beyondthestandardmodeleffectivefieldtheorywithbrightarrowctauoverlinenu
AT hamoudouserge beyondthestandardmodeleffectivefieldtheorywithbrightarrowctauoverlinenu
AT kumarjacky beyondthestandardmodeleffectivefieldtheorywithbrightarrowctauoverlinenu
AT londondavid beyondthestandardmodeleffectivefieldtheorywithbrightarrowctauoverlinenu