Cargando…
Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$
Electroweak interactions assign a central role to the gauge group $SU(2)_L \times U(1)_Y$, which is either realized linearly (SMEFT) or nonlinearly (e.g., HEFT) in the effective theory obtained when new physics above the electroweak scale is integrated out. Although the discovery of the Higgs boson...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.105.073008 http://cds.cern.ch/record/2790741 |
_version_ | 1780972264329576448 |
---|---|
author | Burgess, C.P. Hamoudou, Serge Kumar, Jacky London, David |
author_facet | Burgess, C.P. Hamoudou, Serge Kumar, Jacky London, David |
author_sort | Burgess, C.P. |
collection | CERN |
description | Electroweak interactions assign a central role to the gauge group $SU(2)_L \times U(1)_Y$, which is either realized linearly (SMEFT) or nonlinearly (e.g., HEFT) in the effective theory obtained when new physics above the electroweak scale is integrated out. Although the discovery of the Higgs boson has made SMEFT the default assumption, nonlinear realization remains possible. The two can be distinguished through their predictions for the size of certain low-energy dimension-6 four-fermion operators: for these, HEFT predicts $O(1)$ couplings, while in SMEFT they are suppressed by a factor $v^2/\Lambda_{\rm NP}^2$, where $v$ is the Higgs vev. One such operator, $O_V^{LR} \equiv ({\bar \tau} \gamma^\mu P_L \nu )\, ( {\bar c} \gamma_\mu P_R b )$, contributes to $b \to c \,\tau^- {\bar\nu}$. We show that present constraints permit its non-SMEFT coefficient to have a HEFTy size. We also note that the angular distribution in ${\bar B} \to D^* (\to D \pi') \, \tau^{-} (\to \pi^- \nu_\tau) {\bar\nu}_\tau$ contains enough information to extract the coefficients of all new-physics operators. Future measurements of this angular distribution can therefore tell us if non-SMEFT new physics is really necessary. |
id | cern-2790741 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27907412023-01-31T08:31:06Zdoi:10.1103/PhysRevD.105.073008http://cds.cern.ch/record/2790741engBurgess, C.P.Hamoudou, SergeKumar, JackyLondon, DavidBeyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$hep-phParticle Physics - PhenomenologyElectroweak interactions assign a central role to the gauge group $SU(2)_L \times U(1)_Y$, which is either realized linearly (SMEFT) or nonlinearly (e.g., HEFT) in the effective theory obtained when new physics above the electroweak scale is integrated out. Although the discovery of the Higgs boson has made SMEFT the default assumption, nonlinear realization remains possible. The two can be distinguished through their predictions for the size of certain low-energy dimension-6 four-fermion operators: for these, HEFT predicts $O(1)$ couplings, while in SMEFT they are suppressed by a factor $v^2/\Lambda_{\rm NP}^2$, where $v$ is the Higgs vev. One such operator, $O_V^{LR} \equiv ({\bar \tau} \gamma^\mu P_L \nu )\, ( {\bar c} \gamma_\mu P_R b )$, contributes to $b \to c \,\tau^- {\bar\nu}$. We show that present constraints permit its non-SMEFT coefficient to have a HEFTy size. We also note that the angular distribution in ${\bar B} \to D^* (\to D \pi') \, \tau^{-} (\to \pi^- \nu_\tau) {\bar\nu}_\tau$ contains enough information to extract the coefficients of all new-physics operators. Future measurements of this angular distribution can therefore tell us if non-SMEFT new physics is really necessary.Electroweak interactions assign a central role to the gauge group <math display="inline"><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mn>2</mn><msub><mo stretchy="false">)</mo><mi>L</mi></msub><mo>×</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo><mi>Y</mi></msub></math>, which is either realized linearly (SMEFT) or nonlinearly (e.g., HEFT) in the effective theory obtained when new physics above the electroweak scale is integrated out. Although the discovery of the Higgs boson has made SMEFT the default assumption, nonlinear realization remains possible. The two can be distinguished through their predictions for the size of certain low-energy dimension-6 four-fermion operators: for these, HEFT predicts <math display="inline"><mi>O</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></math> couplings, while in SMEFT they are suppressed by a factor <math display="inline"><msup><mi>v</mi><mn>2</mn></msup><mo stretchy="false">/</mo><msubsup><mi mathvariant="normal">Λ</mi><mrow><mi>NP</mi></mrow><mn>2</mn></msubsup></math>, where <math display="inline"><mi>v</mi></math> is the Higgs vev. One such operator, <math display="inline"><msubsup><mi>O</mi><mi>V</mi><mrow><mi>L</mi><mi>R</mi></mrow></msubsup><mo>≡</mo><mo stretchy="false">(</mo><mover accent="true"><mi>τ</mi><mo stretchy="false">¯</mo></mover><msup><mi>γ</mi><mi>μ</mi></msup><msub><mi>P</mi><mi>L</mi></msub><mi>ν</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mover accent="true"><mi>c</mi><mo stretchy="false">¯</mo></mover><msub><mi>γ</mi><mi>μ</mi></msub><msub><mi>P</mi><mi>R</mi></msub><mi>b</mi><mo stretchy="false">)</mo></math>, contributes to <math display="inline"><mi>b</mi><mo stretchy="false">→</mo><mi>c</mi><msup><mi>τ</mi><mo>-</mo></msup><mover accent="true"><mi>ν</mi><mo stretchy="false">¯</mo></mover></math>. We show that present constraints permit its non-SMEFT coefficient to have a HEFTy size. We also note that the angular distribution in <math display="inline"><mover accent="true"><mi>B</mi><mo stretchy="false">¯</mo></mover><mo stretchy="false">→</mo><msup><mi>D</mi><mo>*</mo></msup><mo stretchy="false">(</mo><mo stretchy="false">→</mo><mi>D</mi><msup><mi>π</mi><mo>′</mo></msup><mo stretchy="false">)</mo><msup><mi>τ</mi><mo>-</mo></msup><mo stretchy="false">(</mo><mo stretchy="false">→</mo><msup><mi>π</mi><mo>-</mo></msup><msub><mi>ν</mi><mi>τ</mi></msub><mo stretchy="false">)</mo><msub><mover accent="true"><mi>ν</mi><mo stretchy="false">¯</mo></mover><mi>τ</mi></msub></math> contains enough information to extract the coefficients of all new-physics operators. Future measurements of this angular distribution can therefore tell us if non-SMEFT new physics is really necessary.arXiv:2111.07421UdeM-GPP-TH-21-290oai:cds.cern.ch:27907412021-11-14 |
spellingShingle | hep-ph Particle Physics - Phenomenology Burgess, C.P. Hamoudou, Serge Kumar, Jacky London, David Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$ |
title | Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$ |
title_full | Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$ |
title_fullStr | Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$ |
title_full_unstemmed | Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$ |
title_short | Beyond the standard model effective field theory with $B \rightarrow c \tau^- \overline{\nu}$ |
title_sort | beyond the standard model effective field theory with $b \rightarrow c \tau^- \overline{\nu}$ |
topic | hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1103/PhysRevD.105.073008 http://cds.cern.ch/record/2790741 |
work_keys_str_mv | AT burgesscp beyondthestandardmodeleffectivefieldtheorywithbrightarrowctauoverlinenu AT hamoudouserge beyondthestandardmodeleffectivefieldtheorywithbrightarrowctauoverlinenu AT kumarjacky beyondthestandardmodeleffectivefieldtheorywithbrightarrowctauoverlinenu AT londondavid beyondthestandardmodeleffectivefieldtheorywithbrightarrowctauoverlinenu |