Cargando…
Photostimulated desorption performance of the future circular hadron collider beam screen
Synchrotron radiation (SR) originated at superconducting bending magnets is known to be at the origin of several beam detrimental effects related to vacuum instabilities. One of the major challenges in the design of the vacuum beam pipes of high-energy hadron colliders is the SR coping strategy. In...
Autores principales: | , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevAccelBeams.24.113201 http://cds.cern.ch/record/2790759 |
_version_ | 1780972268528074752 |
---|---|
author | González, L A Baglin, V Chiggiato, P Garion, C Kersevan, R Casalbuoni, S Grau, A de Jauregui, D Saez Bellafont, I Pérez, F |
author_facet | González, L A Baglin, V Chiggiato, P Garion, C Kersevan, R Casalbuoni, S Grau, A de Jauregui, D Saez Bellafont, I Pérez, F |
author_sort | González, L A |
collection | CERN |
description | Synchrotron radiation (SR) originated at superconducting bending magnets is known to be at the origin
of several beam detrimental effects related to vacuum instabilities. One of the major challenges in the
design of the vacuum beam pipes of high-energy hadron colliders is the SR coping strategy. In the case
of the future circular hadron collider (FCC-hh), a Cu-coated beam screen (BS) operating in the range of
40–60 K has been designed with the aim of protecting the superconducting magnet cold bores from direct
synchrotron irradiation. In order to experimentally study the FCC-hh BS vacuum and cryogenic
performance, two sample prototypes were manufactured and installed in the beam screen test-bench
experiment (BESTEX) at the Karlsruhe Research Accelerator (KARA) at the Karlsruhe Institute of
Technology (KIT). The emitted SR has a critical energy of 6.2 keV, very similar to the 4.6 keVof FCC-hh.
Irradiation at both room (RT) and cryogenic (77 K) temperatures showed a significant reduction of the
molecular photostimulated desorption yields (η) of the FCC-hh beam screen compared to those of Cu
samples. A first approximation of η and its evolution with the photon dose accumulated on the FCC-hh BS
prototype at 77 K allows to estimate that a machine conditioning period of ∼1.2 months would be needed to
reduce the photostimulated molecular density at the necessary levels to ensure a 100 h beam lifetime at
nominal FCC-hh operation. |
id | cern-2790759 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27907592021-11-23T13:30:37Zdoi:10.1103/PhysRevAccelBeams.24.113201http://cds.cern.ch/record/2790759engGonzález, L ABaglin, VChiggiato, PGarion, CKersevan, RCasalbuoni, SGrau, Ade Jauregui, D SaezBellafont, IPérez, FPhotostimulated desorption performance of the future circular hadron collider beam screenAccelerators and Storage RingsSynchrotron radiation (SR) originated at superconducting bending magnets is known to be at the origin of several beam detrimental effects related to vacuum instabilities. One of the major challenges in the design of the vacuum beam pipes of high-energy hadron colliders is the SR coping strategy. In the case of the future circular hadron collider (FCC-hh), a Cu-coated beam screen (BS) operating in the range of 40–60 K has been designed with the aim of protecting the superconducting magnet cold bores from direct synchrotron irradiation. In order to experimentally study the FCC-hh BS vacuum and cryogenic performance, two sample prototypes were manufactured and installed in the beam screen test-bench experiment (BESTEX) at the Karlsruhe Research Accelerator (KARA) at the Karlsruhe Institute of Technology (KIT). The emitted SR has a critical energy of 6.2 keV, very similar to the 4.6 keVof FCC-hh. Irradiation at both room (RT) and cryogenic (77 K) temperatures showed a significant reduction of the molecular photostimulated desorption yields (η) of the FCC-hh beam screen compared to those of Cu samples. A first approximation of η and its evolution with the photon dose accumulated on the FCC-hh BS prototype at 77 K allows to estimate that a machine conditioning period of ∼1.2 months would be needed to reduce the photostimulated molecular density at the necessary levels to ensure a 100 h beam lifetime at nominal FCC-hh operation.oai:cds.cern.ch:27907592021 |
spellingShingle | Accelerators and Storage Rings González, L A Baglin, V Chiggiato, P Garion, C Kersevan, R Casalbuoni, S Grau, A de Jauregui, D Saez Bellafont, I Pérez, F Photostimulated desorption performance of the future circular hadron collider beam screen |
title | Photostimulated desorption performance of the future circular hadron collider beam screen |
title_full | Photostimulated desorption performance of the future circular hadron collider beam screen |
title_fullStr | Photostimulated desorption performance of the future circular hadron collider beam screen |
title_full_unstemmed | Photostimulated desorption performance of the future circular hadron collider beam screen |
title_short | Photostimulated desorption performance of the future circular hadron collider beam screen |
title_sort | photostimulated desorption performance of the future circular hadron collider beam screen |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1103/PhysRevAccelBeams.24.113201 http://cds.cern.ch/record/2790759 |
work_keys_str_mv | AT gonzalezla photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT baglinv photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT chiggiatop photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT garionc photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT kersevanr photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT casalbuonis photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT graua photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT dejaureguidsaez photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT bellafonti photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen AT perezf photostimulateddesorptionperformanceofthefuturecircularhadroncolliderbeamscreen |