Cargando…
Machine Learning Anomaly Detection Applications to Compact Muon Solenoid Data Quality Monitoring
Physics experiments is a crucial and demanding task to deliver high-quality data used for physics analysis. At the Compact Muon Solenoid experiment operating at the CERN Large Hadron Collider, the current quality assessment paradigm, is based on the scrutiny of a large number of statistical tests. H...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2790963 |
Sumario: | Physics experiments is a crucial and demanding task to deliver high-quality data used for physics analysis. At the Compact Muon Solenoid experiment operating at the CERN Large Hadron Collider, the current quality assessment paradigm, is based on the scrutiny of a large number of statistical tests. However, the ever increasing detector complexity and the volume of monitoring data call for a growing paradigm shift. Here, Machine Learning techniques promise a breakthrough. This dissertation deals with the problem of automating Data Quality Monitoring scrutiny with Machine Learning Anomaly. |
---|