Cargando…

Crosscap States in Integrable Field Theories and Spin Chains

We study crosscap states in integrable field theories and spin chains in $1+1$ dimensions. We derive an exact formula for overlaps between the crosscap state and any excited state in integrable field theories with diagonal scattering. We then compute the crosscap entropy, i.e. the overlap for the gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Caetano, Joao, Komatsu, Shota
Lenguaje:eng
Publicado: 2021
Materias:
Acceso en línea:https://dx.doi.org/10.1007/s10955-022-02914-6
http://cds.cern.ch/record/2791064
_version_ 1780972291395420160
author Caetano, Joao
Komatsu, Shota
author_facet Caetano, Joao
Komatsu, Shota
author_sort Caetano, Joao
collection CERN
description We study crosscap states in integrable field theories and spin chains in $1+1$ dimensions. We derive an exact formula for overlaps between the crosscap state and any excited state in integrable field theories with diagonal scattering. We then compute the crosscap entropy, i.e. the overlap for the ground state, in some examples. In the examples we analyzed, the result turns out to decrease monotonically along the renormalization group flow except in cases where the discrete symmetry is spontaneously broken in the infrared. We next introduce crosscap states in integrable spin chains, and obtain determinant expressions for the overlaps with energy eigenstates. These states are long-range entangled and their entanglement entropy grows linearly until the size of the subregion reaches half the system size. This property is reminiscent of pure-state black holes in holography and makes them interesting for use as initial conditions of quantum quench. As side results, we propose a generalization of Zamolodchikov’s staircase model to flows between D-series minimal models, and discuss the relation to fermionic minimal models and the GSO projection.
id cern-2791064
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2021
record_format invenio
spelling cern-27910642023-10-04T06:54:25Zdoi:10.1007/s10955-022-02914-6http://cds.cern.ch/record/2791064engCaetano, JoaoKomatsu, ShotaCrosscap States in Integrable Field Theories and Spin Chainscond-mat.stat-mechhep-thParticle Physics - TheoryWe study crosscap states in integrable field theories and spin chains in $1+1$ dimensions. We derive an exact formula for overlaps between the crosscap state and any excited state in integrable field theories with diagonal scattering. We then compute the crosscap entropy, i.e. the overlap for the ground state, in some examples. In the examples we analyzed, the result turns out to decrease monotonically along the renormalization group flow except in cases where the discrete symmetry is spontaneously broken in the infrared. We next introduce crosscap states in integrable spin chains, and obtain determinant expressions for the overlaps with energy eigenstates. These states are long-range entangled and their entanglement entropy grows linearly until the size of the subregion reaches half the system size. This property is reminiscent of pure-state black holes in holography and makes them interesting for use as initial conditions of quantum quench. As side results, we propose a generalization of Zamolodchikov’s staircase model to flows between D-series minimal models, and discuss the relation to fermionic minimal models and the GSO projection.We study crosscap states in integrable field theories and spin chains in 1+1 dimensions. We derive an exact formula for overlaps between the crosscap state and any excited state in integrable field theories with diagonal scattering. We then compute the crosscap entropy, i.e. the overlap for the ground state, in some examples. In the examples we analyzed, the result turns out to decrease monotonically along the renormalization group flow except in cases where the discrete symmetry is spontaneously broken in the infrared. We next introduce crosscap states in integrable spin chains, and obtain determinant expressions for the overlaps with energy eigenstates. These states are long-range entangled and their entanglement entropy grows linearly until the size of the subregion reaches half the system size. This property is reminiscent of pure-state black holes in holography and makes them interesting for use as initial conditions of quantum quench. As side results, we propose a generalization of Zamolodchikov's staircase model to flows between D-series minimal models, and discuss the relation to fermionic minimal models and the GSO projection.arXiv:2111.09901CERN-TH-2021-175oai:cds.cern.ch:27910642021-11-18
spellingShingle cond-mat.stat-mech
hep-th
Particle Physics - Theory
Caetano, Joao
Komatsu, Shota
Crosscap States in Integrable Field Theories and Spin Chains
title Crosscap States in Integrable Field Theories and Spin Chains
title_full Crosscap States in Integrable Field Theories and Spin Chains
title_fullStr Crosscap States in Integrable Field Theories and Spin Chains
title_full_unstemmed Crosscap States in Integrable Field Theories and Spin Chains
title_short Crosscap States in Integrable Field Theories and Spin Chains
title_sort crosscap states in integrable field theories and spin chains
topic cond-mat.stat-mech
hep-th
Particle Physics - Theory
url https://dx.doi.org/10.1007/s10955-022-02914-6
http://cds.cern.ch/record/2791064
work_keys_str_mv AT caetanojoao crosscapstatesinintegrablefieldtheoriesandspinchains
AT komatsushota crosscapstatesinintegrablefieldtheoriesandspinchains