Cargando…
Taming Triangulation Dependence of $T$$^{6}$/$\mathbb{Z}$$_{2}$ x $\mathbb{Z}$$_{2}$ Resolutions
Resolutions of certain toroidal orbifolds, like $T$$^{6}$/$\mathbb{Z}$$_{2}$ x $\mathbb{Z}$$_{2}$, are far from unique, due to triangulation dependence of their resolved local singularities. This leads to an explosion of the number of topologically distinct smooth geometries associated to a single o...
Autores principales: | Faraggi, A.E., Nibbelink, S. Groot, Heredia, M. Hurtado |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2791309 |
Ejemplares similares
-
Models with (broken) $\mathbb{Z}$$_{2}$ symmetries
por: Robens, Tania
Publicado: (2022) -
F-theory vacua with $\mathbb Z_3$ gauge symmetry
por: Cvetič, Mirjam, et al.
Publicado: (2015) -
Refined topological strings on local $ {\mathrm{\mathbb{P}}}^2 $
por: Iqbal, Amer, et al.
Publicado: (2012) -
N=4 Supergravity Lagrangian for Type IIB on $T^6/ \mathbb{Z}_2$ in Presence of Fluxes and D3-Branes
por: D'Auria, R, et al.
Publicado: (2003) -
Holography for $\mathcal{N}=4$ on $\mathbb{RP}^4$
por: Caetano, Joao, et al.
Publicado: (2022)