Cargando…
Advances in Multi-Variate Analysis Methods for New Physics Searches at the Large Hadron Collider
Between the years 2015 and 2019, members of the Horizon 2020-funded Innovative Training Network named “AMVA4NewPhysics” studied the customization and application of advanced multivariate analysis methods and statistical learning tools to high-energy physics problems, as well as developed entirely ne...
Autores principales: | Stakia, Anna, Dorigo, Tommaso, Banelli, Giovanni, Bortoletto, Daniela, Casa, Alessandro, de Castro, Pablo, Delaere, Christophe, Donini, Julien, Finos, Livio, Gallinaro, Michele, Giammanco, Andrea, Held, Alexander, Jiménez Morales, Fabricio, Kotkowski, Grzegorz, Liew, Seng Pei, Maltoni, Fabio, Menardi, Giovanna, Papavergou, Ioanna, Saggio, Alessia, Scarpa, Bruno, Strong, Giles C., Tosciri, Cecilia, Varela, João, Vischia, Pietro, Weiler, Andreas |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.revip.2021.100063 http://cds.cern.ch/record/2791315 |
Ejemplares similares
-
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Variational Dropout Sparsification for Particle Identification speed-up
por: Ryzhikov, Artem, et al.
Publicado: (2020) -
Hyperparameter optimization, quantum-assisted model performance prediction, and benchmarking of AI-based High Energy Physics workloads using HPC
por: Wulff, Eric, et al.
Publicado: (2023) -
Generative Models for Fast Calorimeter Simulation: the LHCb case
por: Chekalina, Viktoria, et al.
Publicado: (2019)