Cargando…
Probing multi-particle unitarity with the Landau equations
We consider the $2\to 2$ scattering amplitude of identical massive particles. We identify the Landau curves in the multi-particle region $16m^2 \leq s, t < 36m^2$. We systematically generate and select the relevant graphs and numerically solve the associated Landau equations for the leading singu...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.21468/SciPostPhys.13.3.062 http://cds.cern.ch/record/2791621 |
Sumario: | We consider the $2\to 2$ scattering amplitude of identical massive particles. We identify the Landau curves in the multi-particle region $16m^2 \leq s, t < 36m^2$. We systematically generate and select the relevant graphs and numerically solve the associated Landau equations for the leading singularity. We find an infinite sequence of Landau curves that accumulates at finite $s$ and $t$ on the physical sheet. We expect that such accumulations are generic for $s,t > 16m^2$. Our analysis sheds new light on the complicated analytic structure of nonperturbative relativistic scattering amplitudes. |
---|