Cargando…
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
Autoencoders have useful applications in high energy physics in anomaly detection, particularly for jets - collimated showers of particles produced in collisions such as those at the CERN Large Hadron Collider. We explore the use of graph-based autoencoders, which operate on jets in their "part...
Autores principales: | Tsan, Steven, Kansal, Raghav, Aportela, Anthony, Diaz, Daniel, Duarte, Javier, Krishna, Sukanya, Mokhtar, Farouk, Vlimant, Jean-Roch, Pierini, Maurizio |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2791648 |
Ejemplares similares
-
Lorentz Group Equivariant Autoencoders
por: Hao, Zichun, et al.
Publicado: (2022) -
Particle Cloud Generation with Message Passing Generative Adversarial Networks
por: Kansal, Raghav, et al.
Publicado: (2021) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Autoencoders for Real-Time SUEP Detection
por: Chhibra, Simranjit Singh, et al.
Publicado: (2023) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023)