Cargando…
Microchannel Cooling for the LHCb VELO Upgrade I
The LHCb VELO Upgrade I, currently being installed for the 2022 start of LHC Run 3, uses silicon microchannel coolers with internally circulating bi-phase \cotwo for thermal control of hybrid pixel modules operating in vacuum. This is the largest scale application of this technology to date. Product...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.nima.2022.166874 http://cds.cern.ch/record/2792295 |
_version_ | 1780972348713730048 |
---|---|
author | Collins, Paula De Aguiar Francisco, Oscar Augusto Byczynski, Wiktor Akiba, Kazu Bertella, Claudia Bitadze, Alexander Buytaert, Jan De Capua, Stefano Callegari, Riccardo Catinaccio, Andrea Charvet, Colette Coco, Victor Degrange, Jordan Dumps, Raphael Alvarez Feito, Diego Freestone, Julian Franco Lima, Vinicius Gallas Torreira, Abraham Antonio Hulsbergen, Wouter Hynds, Daniel Arnau Izquierdo, Gonzalo Jans, Eddy John, Malcolm Jurik, Nathan Philip Leflat, Alexander Lemos Cid, Edgar Lindner, Rolf Mapelli, Alessandro Noel, Jerome Nomerotski, Andrey De Oliveira, Rui Van Overbeek, Martijn Parkes, Chris Petagna, Paolo Porret, Alexandre Roeland, Erno Romagnoli, Giulia De Roo, Krista Sanders, Freek Schneider, Thomas Schindler, Heinrich Schmidt, Burkhard Schopper, Andreas Scantlebury Smead, Luke George Van Stenis, Miranda Svihra, Peter Teissandier, Benoit Thomas, Eric Verlaat, Bart Castellana, Christine Charrier, Catherine Renaud, Denis Rouchouze, Eric Teisier, Jean-Francois Brock, Matthew Bulat, Bartosz Button, Guillaume Stephane Jedrychowski, Mariusz Jalocha, Pawel Thery, Xavier |
author_facet | Collins, Paula De Aguiar Francisco, Oscar Augusto Byczynski, Wiktor Akiba, Kazu Bertella, Claudia Bitadze, Alexander Buytaert, Jan De Capua, Stefano Callegari, Riccardo Catinaccio, Andrea Charvet, Colette Coco, Victor Degrange, Jordan Dumps, Raphael Alvarez Feito, Diego Freestone, Julian Franco Lima, Vinicius Gallas Torreira, Abraham Antonio Hulsbergen, Wouter Hynds, Daniel Arnau Izquierdo, Gonzalo Jans, Eddy John, Malcolm Jurik, Nathan Philip Leflat, Alexander Lemos Cid, Edgar Lindner, Rolf Mapelli, Alessandro Noel, Jerome Nomerotski, Andrey De Oliveira, Rui Van Overbeek, Martijn Parkes, Chris Petagna, Paolo Porret, Alexandre Roeland, Erno Romagnoli, Giulia De Roo, Krista Sanders, Freek Schneider, Thomas Schindler, Heinrich Schmidt, Burkhard Schopper, Andreas Scantlebury Smead, Luke George Van Stenis, Miranda Svihra, Peter Teissandier, Benoit Thomas, Eric Verlaat, Bart Castellana, Christine Charrier, Catherine Renaud, Denis Rouchouze, Eric Teisier, Jean-Francois Brock, Matthew Bulat, Bartosz Button, Guillaume Stephane Jedrychowski, Mariusz Jalocha, Pawel Thery, Xavier |
author_sort | Collins, Paula |
collection | CERN |
description | The LHCb VELO Upgrade I, currently being installed for the 2022 start of LHC Run 3, uses silicon microchannel coolers with internally circulating bi-phase \cotwo for thermal control of hybrid pixel modules operating in vacuum. This is the largest scale application of this technology to date. Production of the microchannel coolers was completed in July 2019 and the assembly into cooling structures was completed in September 2021. This paper describes the R&D path supporting the microchannel production and assembly and the motivation for the design choices. The microchannel coolers have excellent thermal peformance, low and uniform mass, no thermal expansion mismatch with the ASICs and are radiation hard. The fluidic and thermal performance is presented. |
id | cern-2792295 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27922952023-07-08T06:14:31Zdoi:10.1016/j.nima.2022.166874http://cds.cern.ch/record/2792295engCollins, PaulaDe Aguiar Francisco, Oscar AugustoByczynski, WiktorAkiba, KazuBertella, ClaudiaBitadze, AlexanderBuytaert, JanDe Capua, StefanoCallegari, RiccardoCatinaccio, AndreaCharvet, ColetteCoco, VictorDegrange, JordanDumps, RaphaelAlvarez Feito, DiegoFreestone, JulianFranco Lima, ViniciusGallas Torreira, Abraham AntonioHulsbergen, WouterHynds, DanielArnau Izquierdo, GonzaloJans, EddyJohn, MalcolmJurik, Nathan PhilipLeflat, AlexanderLemos Cid, EdgarLindner, RolfMapelli, AlessandroNoel, JeromeNomerotski, AndreyDe Oliveira, RuiVan Overbeek, MartijnParkes, ChrisPetagna, PaoloPorret, AlexandreRoeland, ErnoRomagnoli, GiuliaDe Roo, KristaSanders, FreekSchneider, ThomasSchindler, HeinrichSchmidt, BurkhardSchopper, AndreasScantlebury Smead, Luke GeorgeVan Stenis, MirandaSvihra, PeterTeissandier, BenoitThomas, EricVerlaat, BartCastellana, ChristineCharrier, CatherineRenaud, DenisRouchouze, EricTeisier, Jean-FrancoisBrock, MatthewBulat, BartoszButton, Guillaume StephaneJedrychowski, MariuszJalocha, PawelThery, XavierMicrochannel Cooling for the LHCb VELO Upgrade IParticle Physics - ExperimentDetectors and Experimental TechniquesThe LHCb VELO Upgrade I, currently being installed for the 2022 start of LHC Run 3, uses silicon microchannel coolers with internally circulating bi-phase \cotwo for thermal control of hybrid pixel modules operating in vacuum. This is the largest scale application of this technology to date. Production of the microchannel coolers was completed in July 2019 and the assembly into cooling structures was completed in September 2021. This paper describes the R&D path supporting the microchannel production and assembly and the motivation for the design choices. The microchannel coolers have excellent thermal peformance, low and uniform mass, no thermal expansion mismatch with the ASICs and are radiation hard. The fluidic and thermal performance is presented.The LHCb VELO Upgrade I, currently being installed for the 2022 start of LHC Run 3, uses silicon microchannel coolers with internally circulating bi-phase \cotwo for thermal control of hybrid pixel modules operating in vacuum. This is the largest scale application of this technology to date. Production of the microchannel coolers was completed in July 2019 and the assembly into cooling structures was completed in September 2021. This paper describes the R&D path supporting the microchannel production and assembly and the motivation for the design choices. The microchannel coolers have excellent thermal peformance, low and uniform mass, no thermal expansion mismatch with the ASICs and are radiation hard. The fluidic and thermal performance is presented.The LHCb VELO Upgrade I, currently being installed for the 2022 start of LHC Run 3, uses silicon microchannel coolers with internally circulating bi-phase CO2 for thermal control of hybrid pixel modules operating in vacuum. This is the largest scale application of this technology to date. Production of the microchannel coolers was completed in July 2019 and the assembly into cooling structures was completed in September 2021. This article describes the R&D path supporting the microchannel production and assembly and the motivation for the design choices, together with the achieved fluidic and thermal performance. The Thermal Figure of Merit of the microchannel coolers is measured on the final modules to be between 1.5 and 3.5 K cm2 W−1, depending on glue thickness. The microchannel coolers constitute 18% of the total radiation length of the VELO and less than 2% of the material seen before the second measured point on the tracks. Microchannel cooling is well suited to the VELO implementation due to the uniform mass distribution, close thermal expansion match with the module components and resistance to radiation.The LHCb VELO Upgrade I, currently being installed for the 2022 start of LHC Run 3, uses silicon microchannel coolers with internally circulating bi-phase CO$_2$ for thermal control of hybrid pixel modules operating in vacuum. This is the largest scale application of this technology to date. Production of the microchannel coolers was completed in July 2019 and the assembly into cooling structures was completed in September 2021. This article describes the R&D path supporting the microchannel production and assembly and the motivation for the design choices, together with the achieved fluidic and thermal performance. The Thermal Figure of Merit of the microchannel coolers is measured on the final modules to be between 1.5 and 3.5 K cm$^2$ W$^{-1}$, depending on glue thickness. The microchannel coolers constitute 18% of the total radiation length of the VELO and less than 2% of the material seen before the second measured point on the tracks. Microchannel cooling is well suited to the VELO implementation due to the uniform mass distribution, close thermal expansion match with the module components and resistance to radiation.The LHCb VELO Upgrade I, currently being installed for the 2022 start of LHC Run 3, uses silicon microchannel coolers with internally circulating bi-phase \cotwo for thermal control of hybrid pixel modules operating in vacuum. This is the largest scale application of this technology to date. Production of the microchannel coolers was completed in July 2019 and the assembly into cooling structures was completed in September 2021. This paper describes the R&D path supporting the microchannel production and assembly and the motivation for the design choices. The microchannel coolers have excellent thermal peformance, low and uniform mass, no thermal expansion mismatch with the ASICs and are radiation hard. The fluidic and thermal performance is presented.arXiv:2112.12763CERN-LHCb-PUB-2021-010LHCb-PUB-2021-010CERN-LHCb-PUB-2021-010oai:cds.cern.ch:27922952021-12-06 |
spellingShingle | Particle Physics - Experiment Detectors and Experimental Techniques Collins, Paula De Aguiar Francisco, Oscar Augusto Byczynski, Wiktor Akiba, Kazu Bertella, Claudia Bitadze, Alexander Buytaert, Jan De Capua, Stefano Callegari, Riccardo Catinaccio, Andrea Charvet, Colette Coco, Victor Degrange, Jordan Dumps, Raphael Alvarez Feito, Diego Freestone, Julian Franco Lima, Vinicius Gallas Torreira, Abraham Antonio Hulsbergen, Wouter Hynds, Daniel Arnau Izquierdo, Gonzalo Jans, Eddy John, Malcolm Jurik, Nathan Philip Leflat, Alexander Lemos Cid, Edgar Lindner, Rolf Mapelli, Alessandro Noel, Jerome Nomerotski, Andrey De Oliveira, Rui Van Overbeek, Martijn Parkes, Chris Petagna, Paolo Porret, Alexandre Roeland, Erno Romagnoli, Giulia De Roo, Krista Sanders, Freek Schneider, Thomas Schindler, Heinrich Schmidt, Burkhard Schopper, Andreas Scantlebury Smead, Luke George Van Stenis, Miranda Svihra, Peter Teissandier, Benoit Thomas, Eric Verlaat, Bart Castellana, Christine Charrier, Catherine Renaud, Denis Rouchouze, Eric Teisier, Jean-Francois Brock, Matthew Bulat, Bartosz Button, Guillaume Stephane Jedrychowski, Mariusz Jalocha, Pawel Thery, Xavier Microchannel Cooling for the LHCb VELO Upgrade I |
title | Microchannel Cooling for the LHCb VELO Upgrade I |
title_full | Microchannel Cooling for the LHCb VELO Upgrade I |
title_fullStr | Microchannel Cooling for the LHCb VELO Upgrade I |
title_full_unstemmed | Microchannel Cooling for the LHCb VELO Upgrade I |
title_short | Microchannel Cooling for the LHCb VELO Upgrade I |
title_sort | microchannel cooling for the lhcb velo upgrade i |
topic | Particle Physics - Experiment Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1016/j.nima.2022.166874 http://cds.cern.ch/record/2792295 |
work_keys_str_mv | AT collinspaula microchannelcoolingforthelhcbveloupgradei AT deaguiarfranciscooscaraugusto microchannelcoolingforthelhcbveloupgradei AT byczynskiwiktor microchannelcoolingforthelhcbveloupgradei AT akibakazu microchannelcoolingforthelhcbveloupgradei AT bertellaclaudia microchannelcoolingforthelhcbveloupgradei AT bitadzealexander microchannelcoolingforthelhcbveloupgradei AT buytaertjan microchannelcoolingforthelhcbveloupgradei AT decapuastefano microchannelcoolingforthelhcbveloupgradei AT callegaririccardo microchannelcoolingforthelhcbveloupgradei AT catinaccioandrea microchannelcoolingforthelhcbveloupgradei AT charvetcolette microchannelcoolingforthelhcbveloupgradei AT cocovictor microchannelcoolingforthelhcbveloupgradei AT degrangejordan microchannelcoolingforthelhcbveloupgradei AT dumpsraphael microchannelcoolingforthelhcbveloupgradei AT alvarezfeitodiego microchannelcoolingforthelhcbveloupgradei AT freestonejulian microchannelcoolingforthelhcbveloupgradei AT francolimavinicius microchannelcoolingforthelhcbveloupgradei AT gallastorreiraabrahamantonio microchannelcoolingforthelhcbveloupgradei AT hulsbergenwouter microchannelcoolingforthelhcbveloupgradei AT hyndsdaniel microchannelcoolingforthelhcbveloupgradei AT arnauizquierdogonzalo microchannelcoolingforthelhcbveloupgradei AT janseddy microchannelcoolingforthelhcbveloupgradei AT johnmalcolm microchannelcoolingforthelhcbveloupgradei AT juriknathanphilip microchannelcoolingforthelhcbveloupgradei AT leflatalexander microchannelcoolingforthelhcbveloupgradei AT lemoscidedgar microchannelcoolingforthelhcbveloupgradei AT lindnerrolf microchannelcoolingforthelhcbveloupgradei AT mapellialessandro microchannelcoolingforthelhcbveloupgradei AT noeljerome microchannelcoolingforthelhcbveloupgradei AT nomerotskiandrey microchannelcoolingforthelhcbveloupgradei AT deoliveirarui microchannelcoolingforthelhcbveloupgradei AT vanoverbeekmartijn microchannelcoolingforthelhcbveloupgradei AT parkeschris microchannelcoolingforthelhcbveloupgradei AT petagnapaolo microchannelcoolingforthelhcbveloupgradei AT porretalexandre microchannelcoolingforthelhcbveloupgradei AT roelanderno microchannelcoolingforthelhcbveloupgradei AT romagnoligiulia microchannelcoolingforthelhcbveloupgradei AT derookrista microchannelcoolingforthelhcbveloupgradei AT sandersfreek microchannelcoolingforthelhcbveloupgradei AT schneiderthomas microchannelcoolingforthelhcbveloupgradei AT schindlerheinrich microchannelcoolingforthelhcbveloupgradei AT schmidtburkhard microchannelcoolingforthelhcbveloupgradei AT schopperandreas microchannelcoolingforthelhcbveloupgradei AT scantleburysmeadlukegeorge microchannelcoolingforthelhcbveloupgradei AT vanstenismiranda microchannelcoolingforthelhcbveloupgradei AT svihrapeter microchannelcoolingforthelhcbveloupgradei AT teissandierbenoit microchannelcoolingforthelhcbveloupgradei AT thomaseric microchannelcoolingforthelhcbveloupgradei AT verlaatbart microchannelcoolingforthelhcbveloupgradei AT castellanachristine microchannelcoolingforthelhcbveloupgradei AT charriercatherine microchannelcoolingforthelhcbveloupgradei AT renauddenis microchannelcoolingforthelhcbveloupgradei AT rouchouzeeric microchannelcoolingforthelhcbveloupgradei AT teisierjeanfrancois microchannelcoolingforthelhcbveloupgradei AT brockmatthew microchannelcoolingforthelhcbveloupgradei AT bulatbartosz microchannelcoolingforthelhcbveloupgradei AT buttonguillaumestephane microchannelcoolingforthelhcbveloupgradei AT jedrychowskimariusz microchannelcoolingforthelhcbveloupgradei AT jalochapawel microchannelcoolingforthelhcbveloupgradei AT theryxavier microchannelcoolingforthelhcbveloupgradei |