Cargando…
Operator coproduct-realization of quantum group transformations in two dimensional gravity, 1
A simple connection between the universal R matrix of U_q(sl(2)) (for spins \demi and J) and the required form of the co-product action of the Hilbert space generators of the quantum group symmetry is put forward. This gives an explicit operator realization of the co-product action on the covariant...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
1995
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BF02104913 http://cds.cern.ch/record/279303 |
Sumario: | A simple connection between the universal R matrix of U_q(sl(2)) (for spins \demi and J) and the required form of the co-product action of the Hilbert space generators of the quantum group symmetry is put forward. This gives an explicit operator realization of the co-product action on the covariant operators. It allows us to derive the quantum group covariance of the fusion and braiding matrices, although it is of a new type: the generators depend upon worldsheet variables, and obey a new central extension of U_q(sl(2)) realized by (what we call) fixed point commutation relations. This is explained by showing that the link between the algebra of field transformations and that of the co-product generators is much weaker than previously thought. The central charges of our extended U_q(sl(2)) algebra, which includes the Liouville zero-mode momentum in a nontrivial way are related to Virasoro-descendants of unity. We also show how our approach can be used to derive the Hopf algebra structure of the extended quantum-group symmetry U_q(sl(2))\odot U_{\qhat}(sl(2)) related to the presence of both of the screening charges of 2D gravity. |
---|