Cargando…
Reaching new peaks for the future of the CMS HTCondor Global Pool
The CMS experiment at CERN employs a distributed computing infrastructure to satisfy its data processing and simulation needs. The CMS Submission Infrastructure team manages a dynamic HTCondor pool, aggregating mainly Grid clusters worldwide, but also HPC, Cloud and opportunistic resources. This CMS...
Autores principales: | , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202125102055 http://cds.cern.ch/record/2797501 |
_version_ | 1780972395738169344 |
---|---|
author | Perez-Calero Yzquierdo, Antonio Maria Mascheroni, Marco Acosta Flechas, Maria Dost, Jeffrey Michael Haleem, Saqib Hurtado Anampa, Kenyi Paolo Khan, Farrukh Aftab Kizinevic, Edita Peregonow, Nicholas |
author_facet | Perez-Calero Yzquierdo, Antonio Maria Mascheroni, Marco Acosta Flechas, Maria Dost, Jeffrey Michael Haleem, Saqib Hurtado Anampa, Kenyi Paolo Khan, Farrukh Aftab Kizinevic, Edita Peregonow, Nicholas |
author_sort | Perez-Calero Yzquierdo, Antonio Maria |
collection | CERN |
description | The CMS experiment at CERN employs a distributed computing infrastructure to satisfy its data processing and simulation needs. The CMS Submission Infrastructure team manages a dynamic HTCondor pool, aggregating mainly Grid clusters worldwide, but also HPC, Cloud and opportunistic resources. This CMS Global Pool, which currently involves over 70 computing sites worldwide and peaks at 350k CPU cores, is employed to successfully manage the simultaneous execution of up to 150k tasks. While the present infrastructure is sufficient to harness the current computing power scales, CMS latest estimates predict a noticeable expansion in the amount of CPU that will be required in order to cope with the massive data increase of the High-Luminosity LHC (HL-LHC) era, planned to start in 2027. This contribution presents the latest results of the CMS Submission Infrastructure team in exploring and expanding the scalability reach of our Global Pool, in order to preventively detect and overcome any barriers in relation to the HL-LHC goals, while maintaining high efficiency in our workload scheduling and resource utilization. |
id | cern-2797501 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27975012022-08-23T09:24:41Zdoi:10.1051/epjconf/202125102055http://cds.cern.ch/record/2797501engPerez-Calero Yzquierdo, Antonio MariaMascheroni, MarcoAcosta Flechas, MariaDost, Jeffrey MichaelHaleem, SaqibHurtado Anampa, Kenyi PaoloKhan, Farrukh AftabKizinevic, EditaPeregonow, NicholasReaching new peaks for the future of the CMS HTCondor Global PoolDetectors and Experimental TechniquesComputing and ComputersThe CMS experiment at CERN employs a distributed computing infrastructure to satisfy its data processing and simulation needs. The CMS Submission Infrastructure team manages a dynamic HTCondor pool, aggregating mainly Grid clusters worldwide, but also HPC, Cloud and opportunistic resources. This CMS Global Pool, which currently involves over 70 computing sites worldwide and peaks at 350k CPU cores, is employed to successfully manage the simultaneous execution of up to 150k tasks. While the present infrastructure is sufficient to harness the current computing power scales, CMS latest estimates predict a noticeable expansion in the amount of CPU that will be required in order to cope with the massive data increase of the High-Luminosity LHC (HL-LHC) era, planned to start in 2027. This contribution presents the latest results of the CMS Submission Infrastructure team in exploring and expanding the scalability reach of our Global Pool, in order to preventively detect and overcome any barriers in relation to the HL-LHC goals, while maintaining high efficiency in our workload scheduling and resource utilization.The CMS experiment at CERN employs a distributed computing infrastructure to satisfy its data processing and simulation needs. The CMS Submission Infrastructure team manages a dynamic HTCondor pool, aggregating mainly Grid clusters worldwide, but also HPC, Cloud and opportunistic resources. This CMS Global Pool, which currently involves over 70 computing sites worldwide and peaks at 350k CPU cores, is employed to successfully manage the simultaneous execution of up to 150k tasks. While the present infrastructure is sufficient to harness the current computing power scales, CMS latest estimates predict a noticeable expansion in the amount of CPU that will be required in order to cope with the massive data increase of the High-Luminosity LHC (HL-LHC) era, planned to start in 2027. This contribution presents the latest results of the CMS Submission Infrastructure team in exploring and expanding the scalability reach of our Global Pool, in order to preventively detect and overcome any barriers in relation to the HL-LHC goals, while maintaining high effciency in our workload scheduling and resource utilization.CMS-CR-2021-023oai:cds.cern.ch:27975012021-02-26 |
spellingShingle | Detectors and Experimental Techniques Computing and Computers Perez-Calero Yzquierdo, Antonio Maria Mascheroni, Marco Acosta Flechas, Maria Dost, Jeffrey Michael Haleem, Saqib Hurtado Anampa, Kenyi Paolo Khan, Farrukh Aftab Kizinevic, Edita Peregonow, Nicholas Reaching new peaks for the future of the CMS HTCondor Global Pool |
title | Reaching new peaks for the future of the CMS HTCondor Global Pool |
title_full | Reaching new peaks for the future of the CMS HTCondor Global Pool |
title_fullStr | Reaching new peaks for the future of the CMS HTCondor Global Pool |
title_full_unstemmed | Reaching new peaks for the future of the CMS HTCondor Global Pool |
title_short | Reaching new peaks for the future of the CMS HTCondor Global Pool |
title_sort | reaching new peaks for the future of the cms htcondor global pool |
topic | Detectors and Experimental Techniques Computing and Computers |
url | https://dx.doi.org/10.1051/epjconf/202125102055 http://cds.cern.ch/record/2797501 |
work_keys_str_mv | AT perezcaleroyzquierdoantoniomaria reachingnewpeaksforthefutureofthecmshtcondorglobalpool AT mascheronimarco reachingnewpeaksforthefutureofthecmshtcondorglobalpool AT acostaflechasmaria reachingnewpeaksforthefutureofthecmshtcondorglobalpool AT dostjeffreymichael reachingnewpeaksforthefutureofthecmshtcondorglobalpool AT haleemsaqib reachingnewpeaksforthefutureofthecmshtcondorglobalpool AT hurtadoanampakenyipaolo reachingnewpeaksforthefutureofthecmshtcondorglobalpool AT khanfarrukhaftab reachingnewpeaksforthefutureofthecmshtcondorglobalpool AT kizinevicedita reachingnewpeaksforthefutureofthecmshtcondorglobalpool AT peregonownicholas reachingnewpeaksforthefutureofthecmshtcondorglobalpool |