Cargando…
Explaining machine-learned particle-flow reconstruction
The particle-flow (PF) algorithm is used in general-purpose particle detectors to reconstruct a comprehensive particle-level view of the collision by combining information from different subdetectors. A graph neural network (GNN) model, known as the machine-learned particle-flow (MLPF) algorithm, ha...
Autores principales: | Mokhtar, Farouk, Kansal, Raghav, Diaz, Daniel, Duarte, Javier, Pata, Joosep, Pierini, Maurizio, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2797847 |
Ejemplares similares
-
Progress towards an improved particle flow algorithm at CMS with machine learning
por: Mokhtar, Farouk, et al.
Publicado: (2023) -
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
por: Tsan, Steven, et al.
Publicado: (2021) -
Particle Cloud Generation with Message Passing Generative Adversarial Networks
por: Kansal, Raghav, et al.
Publicado: (2021) -
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
por: Pata, Joosep, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023)