Cargando…
Analytical and experimental study of center line miscalibrations in Mølmer-Sørensen gates
A major challenge for the realisation of useful universal quantum computers is achieving high fidelity two-qubit entangling gate operations. However, calibration errors can affect the quantum gate operations and limit their fidelity. To reduce such errors it is desirable to have an analytical unders...
Autores principales: | , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2797849 |
_version_ | 1780972443508146176 |
---|---|
author | Martínez-García, Fernando Gerster, Lukas Vodola, Davide Hrmo, Pavel Monz, Thomas Schindler, Philipp Müller, Markus |
author_facet | Martínez-García, Fernando Gerster, Lukas Vodola, Davide Hrmo, Pavel Monz, Thomas Schindler, Philipp Müller, Markus |
author_sort | Martínez-García, Fernando |
collection | CERN |
description | A major challenge for the realisation of useful universal quantum computers is achieving high fidelity two-qubit entangling gate operations. However, calibration errors can affect the quantum gate operations and limit their fidelity. To reduce such errors it is desirable to have an analytical understanding and quantitative predictions of the effects that miscalibrations of gate parameters have on the gate performance. In this work, we study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate, which is widely used in trapped ion quantum processors. Our analytical treatment particularly focuses on systematic center line detuning miscalibrations. Via a unitary Magnus expansion, we compute the gate evolution operator which allows us to obtain relevant key properties such as relative phases, electronic populations, quantum state purity and fidelities. These quantities, subsequently, are used to assess the performance of the gate using the fidelity of entangled states as performance metric. We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor. The method and the results presented here can help design and calibrate high-fidelity gate operations of large-scale quantum computers. |
id | cern-2797849 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27978492021-12-27T18:01:05Zhttp://cds.cern.ch/record/2797849engMartínez-García, FernandoGerster, LukasVodola, DavideHrmo, PavelMonz, ThomasSchindler, PhilippMüller, MarkusAnalytical and experimental study of center line miscalibrations in Mølmer-Sørensen gatesquant-phGeneral Theoretical PhysicsA major challenge for the realisation of useful universal quantum computers is achieving high fidelity two-qubit entangling gate operations. However, calibration errors can affect the quantum gate operations and limit their fidelity. To reduce such errors it is desirable to have an analytical understanding and quantitative predictions of the effects that miscalibrations of gate parameters have on the gate performance. In this work, we study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate, which is widely used in trapped ion quantum processors. Our analytical treatment particularly focuses on systematic center line detuning miscalibrations. Via a unitary Magnus expansion, we compute the gate evolution operator which allows us to obtain relevant key properties such as relative phases, electronic populations, quantum state purity and fidelities. These quantities, subsequently, are used to assess the performance of the gate using the fidelity of entangled states as performance metric. We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor. The method and the results presented here can help design and calibrate high-fidelity gate operations of large-scale quantum computers.arXiv:2112.05447oai:cds.cern.ch:27978492021-12-10 |
spellingShingle | quant-ph General Theoretical Physics Martínez-García, Fernando Gerster, Lukas Vodola, Davide Hrmo, Pavel Monz, Thomas Schindler, Philipp Müller, Markus Analytical and experimental study of center line miscalibrations in Mølmer-Sørensen gates |
title | Analytical and experimental study of center line miscalibrations in Mølmer-Sørensen gates |
title_full | Analytical and experimental study of center line miscalibrations in Mølmer-Sørensen gates |
title_fullStr | Analytical and experimental study of center line miscalibrations in Mølmer-Sørensen gates |
title_full_unstemmed | Analytical and experimental study of center line miscalibrations in Mølmer-Sørensen gates |
title_short | Analytical and experimental study of center line miscalibrations in Mølmer-Sørensen gates |
title_sort | analytical and experimental study of center line miscalibrations in mølmer-sørensen gates |
topic | quant-ph General Theoretical Physics |
url | http://cds.cern.ch/record/2797849 |
work_keys_str_mv | AT martinezgarciafernando analyticalandexperimentalstudyofcenterlinemiscalibrationsinmølmersørensengates AT gersterlukas analyticalandexperimentalstudyofcenterlinemiscalibrationsinmølmersørensengates AT vodoladavide analyticalandexperimentalstudyofcenterlinemiscalibrationsinmølmersørensengates AT hrmopavel analyticalandexperimentalstudyofcenterlinemiscalibrationsinmølmersørensengates AT monzthomas analyticalandexperimentalstudyofcenterlinemiscalibrationsinmølmersørensengates AT schindlerphilipp analyticalandexperimentalstudyofcenterlinemiscalibrationsinmølmersørensengates AT mullermarkus analyticalandexperimentalstudyofcenterlinemiscalibrationsinmølmersørensengates |