Cargando…
Magnetic scattering: pairwise little group and pairwise helicity
<!--HTML--><p>I discuss how to construct a Lorentz-invariant S-matrix for the scattering of electrically and magnetically charged particles. A key ingredient is a revision of our fundamental understanding of multi-particle representations of the Poincaré group....
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2798596 |
_version_ | 1780972487946797056 |
---|---|
author | Csaki, Csaba |
author_facet | Csaki, Csaba |
author_sort | Csaki, Csaba |
collection | CERN |
description | <!--HTML--><p>I discuss how to construct a Lorentz-invariant S-matrix for the scattering of electrically and magnetically charged particles. A key ingredient is a revision of our fundamental understanding of multi-particle representations of the Poincaré group. Surprisingly, the asymptotic states for electric-magnetic scattering transform with an additional little group phase, associated with pairs of electrically and magnetically charged particles. I will discuss the general construction of such states. The resulting "pairwise helicity" is identified with the quantized "cross product" of charges e1 g2- e2 g1 for every charge-monopole pair, and represents the extra angular momentum stored in the asymptotic electromagnetic field. We define a new kind ofpairwise spinor-helicity variable, which serves as an additional building block for electric-magnetic scattering amplitudes. We then construct the most general 3-point S-matrix elements, as well as the full partial wave decomposition for the 2 -> 2 fermion-monopole S-matrix. In particular, we derive the famous helicity flip in the lowest partial wave as a simple consequence of a generalized spin-helicity selection rule, as well as the full angular dependence for the higher partial waves. We will also discuss a possible direction for resolving Callan's ``semiton" problem: the scattering amplitude of a positron on a GUT monopole which apparently does not have an allowed final state. We will show that using entagled pairwise helicity spinors a simple possible s-wave final state does exist.</p>
TH colloquia: https://cern.zoom.us/j/67346292748?pwd=ZnRkQWh0ZXVFQTc5K256QW5NcEcrdz09 |
id | cern-2798596 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27985962022-11-02T22:02:11Zhttp://cds.cern.ch/record/2798596engCsaki, CsabaMagnetic scattering: pairwise little group and pairwise helicityMagnetic scattering: pairwise little group and pairwise helicityTheory Colloquia<!--HTML--><p>I discuss how to construct a Lorentz-invariant S-matrix for the scattering of electrically and magnetically charged particles. A key ingredient is a revision of our fundamental understanding of multi-particle representations of the Poincaré group. Surprisingly, the asymptotic states for electric-magnetic scattering transform with an additional little group phase, associated with pairs of electrically and magnetically charged particles. I will discuss the general construction of such states. The resulting "pairwise helicity" is identified with the quantized "cross product" of charges e1 g2- e2 g1 for every charge-monopole pair, and represents the extra angular momentum stored in the asymptotic electromagnetic field. We define a new kind ofpairwise spinor-helicity variable, which serves as an additional building block for electric-magnetic scattering amplitudes. We then construct the most general 3-point S-matrix elements, as well as the full partial wave decomposition for the 2 -> 2 fermion-monopole S-matrix. In particular, we derive the famous helicity flip in the lowest partial wave as a simple consequence of a generalized spin-helicity selection rule, as well as the full angular dependence for the higher partial waves. We will also discuss a possible direction for resolving Callan's ``semiton" problem: the scattering amplitude of a positron on a GUT monopole which apparently does not have an allowed final state. We will show that using entagled pairwise helicity spinors a simple possible s-wave final state does exist.</p> TH colloquia: https://cern.zoom.us/j/67346292748?pwd=ZnRkQWh0ZXVFQTc5K256QW5NcEcrdz09oai:cds.cern.ch:27985962021 |
spellingShingle | Theory Colloquia Csaki, Csaba Magnetic scattering: pairwise little group and pairwise helicity |
title | Magnetic scattering: pairwise little group and pairwise helicity |
title_full | Magnetic scattering: pairwise little group and pairwise helicity |
title_fullStr | Magnetic scattering: pairwise little group and pairwise helicity |
title_full_unstemmed | Magnetic scattering: pairwise little group and pairwise helicity |
title_short | Magnetic scattering: pairwise little group and pairwise helicity |
title_sort | magnetic scattering: pairwise little group and pairwise helicity |
topic | Theory Colloquia |
url | http://cds.cern.ch/record/2798596 |
work_keys_str_mv | AT csakicsaba magneticscatteringpairwiselittlegroupandpairwisehelicity |