Cargando…
Nuclear Charge Radii of the Nickel Isotopes $^{58-68,70}$Ni
Collinear laser spectroscopy is performed on the nickel isotopes <math display="inline"><mrow><mmultiscripts><mrow><mi>Ni</mi></mrow><mprescripts/><none/><mrow><mn>58</mn><mo>-</mo><mn>68</mn>&l...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevLett.128.022502 http://cds.cern.ch/record/2798893 |
_version_ | 1780972503338844160 |
---|---|
author | Malbrunot-Ettenauer, S. Kaufmann, S. Bacca, S. Barbieri, C. Billowes, J. Bissell, M.L. Blaum, K. Cheal, B. Duguet, T. Ruiz, R.F. Garcia Gins, W. Gorges, C. Hagen, G. Heylen, H. Holt, J.D. Jansen, G.R. Kanellakopoulos, A. Kortelainen, M. Miyagi, T. Navrátil, P. Nazarewicz, W. Neugart, R. Neyens, G. Nörtershäuser, W. Novario, S.J. Papenbrock, T. Ratajczyk, T. Reinhard, P.-G. Rodríguez, L.V. Sánchez, R. Sailer, S. Schwenk, A. Simonis, J. Somà, V. Stroberg, S.R. Wehner, L. Wraith, C. Xie, L. Xu, Z.Y. Yang, X.F. Yordanov, D.T. |
author_facet | Malbrunot-Ettenauer, S. Kaufmann, S. Bacca, S. Barbieri, C. Billowes, J. Bissell, M.L. Blaum, K. Cheal, B. Duguet, T. Ruiz, R.F. Garcia Gins, W. Gorges, C. Hagen, G. Heylen, H. Holt, J.D. Jansen, G.R. Kanellakopoulos, A. Kortelainen, M. Miyagi, T. Navrátil, P. Nazarewicz, W. Neugart, R. Neyens, G. Nörtershäuser, W. Novario, S.J. Papenbrock, T. Ratajczyk, T. Reinhard, P.-G. Rodríguez, L.V. Sánchez, R. Sailer, S. Schwenk, A. Simonis, J. Somà, V. Stroberg, S.R. Wehner, L. Wraith, C. Xie, L. Xu, Z.Y. Yang, X.F. Yordanov, D.T. |
author_sort | Malbrunot-Ettenauer, S. |
collection | CERN |
description | Collinear laser spectroscopy is performed on the nickel isotopes <math display="inline"><mrow><mmultiscripts><mrow><mi>Ni</mi></mrow><mprescripts/><none/><mrow><mn>58</mn><mo>-</mo><mn>68</mn><mo>,</mo><mn>70</mn></mrow></mmultiscripts></mrow></math>, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii <math display="inline"><msub><mi>R</mi><mi>c</mi></msub></math> are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction <math display="inline"><msub><mrow><mi>NNLO</mi></mrow><mrow><mi>sat</mi></mrow></msub></math>, which allows an assessment of their accuracy. We find agreement with experiment in differential radii <math display="inline"><mrow><mi>δ</mi><mrow><mo stretchy="false">⟨</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo stretchy="false">⟩</mo></mrow></mrow></math> for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for <math display="inline"><msub><mrow><mi>NNLO</mi></mrow><mrow><mi>sat</mi></mrow></msub></math>. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional <math display="inline"><mrow><mi>Fy</mi><mo stretchy="false">(</mo><mi mathvariant="normal">Δ</mi><mi>r</mi><mo>,</mo><mi>HFB</mi><mo stretchy="false">)</mo></mrow></math>. |
id | cern-2798893 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2021 |
record_format | invenio |
spelling | cern-27988932023-01-31T10:27:09Zdoi:10.1103/PhysRevLett.128.022502http://cds.cern.ch/record/2798893engMalbrunot-Ettenauer, S.Kaufmann, S.Bacca, S.Barbieri, C.Billowes, J.Bissell, M.L.Blaum, K.Cheal, B.Duguet, T.Ruiz, R.F. GarciaGins, W.Gorges, C.Hagen, G.Heylen, H.Holt, J.D.Jansen, G.R.Kanellakopoulos, A.Kortelainen, M.Miyagi, T.Navrátil, P.Nazarewicz, W.Neugart, R.Neyens, G.Nörtershäuser, W.Novario, S.J.Papenbrock, T.Ratajczyk, T.Reinhard, P.-G.Rodríguez, L.V.Sánchez, R.Sailer, S.Schwenk, A.Simonis, J.Somà, V.Stroberg, S.R.Wehner, L.Wraith, C.Xie, L.Xu, Z.Y.Yang, X.F.Yordanov, D.T.Nuclear Charge Radii of the Nickel Isotopes $^{58-68,70}$Ninucl-thNuclear Physics - Theorynucl-exNuclear Physics - ExperimentCollinear laser spectroscopy is performed on the nickel isotopes <math display="inline"><mrow><mmultiscripts><mrow><mi>Ni</mi></mrow><mprescripts/><none/><mrow><mn>58</mn><mo>-</mo><mn>68</mn><mo>,</mo><mn>70</mn></mrow></mmultiscripts></mrow></math>, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii <math display="inline"><msub><mi>R</mi><mi>c</mi></msub></math> are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction <math display="inline"><msub><mrow><mi>NNLO</mi></mrow><mrow><mi>sat</mi></mrow></msub></math>, which allows an assessment of their accuracy. We find agreement with experiment in differential radii <math display="inline"><mrow><mi>δ</mi><mrow><mo stretchy="false">⟨</mo><msubsup><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo stretchy="false">⟩</mo></mrow></mrow></math> for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for <math display="inline"><msub><mrow><mi>NNLO</mi></mrow><mrow><mi>sat</mi></mrow></msub></math>. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional <math display="inline"><mrow><mi>Fy</mi><mo stretchy="false">(</mo><mi mathvariant="normal">Δ</mi><mi>r</mi><mo>,</mo><mi>HFB</mi><mo stretchy="false">)</mo></mrow></math>.Collinear laser spectroscopy is performed on the nickel isotopes $^{58-68,70}$Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii $R_c$ are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO$_{\rm sat}$, which allows an assessment of their accuracy. We find agreement with experiment in differential radii $\delta \left\langle r_\mathrm{c}^2 \right\rangle$ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO$_{\rm sat}$. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy($\Delta r$,HFB).arXiv:2112.03382oai:cds.cern.ch:27988932021-12-06 |
spellingShingle | nucl-th Nuclear Physics - Theory nucl-ex Nuclear Physics - Experiment Malbrunot-Ettenauer, S. Kaufmann, S. Bacca, S. Barbieri, C. Billowes, J. Bissell, M.L. Blaum, K. Cheal, B. Duguet, T. Ruiz, R.F. Garcia Gins, W. Gorges, C. Hagen, G. Heylen, H. Holt, J.D. Jansen, G.R. Kanellakopoulos, A. Kortelainen, M. Miyagi, T. Navrátil, P. Nazarewicz, W. Neugart, R. Neyens, G. Nörtershäuser, W. Novario, S.J. Papenbrock, T. Ratajczyk, T. Reinhard, P.-G. Rodríguez, L.V. Sánchez, R. Sailer, S. Schwenk, A. Simonis, J. Somà, V. Stroberg, S.R. Wehner, L. Wraith, C. Xie, L. Xu, Z.Y. Yang, X.F. Yordanov, D.T. Nuclear Charge Radii of the Nickel Isotopes $^{58-68,70}$Ni |
title | Nuclear Charge Radii of the Nickel Isotopes $^{58-68,70}$Ni |
title_full | Nuclear Charge Radii of the Nickel Isotopes $^{58-68,70}$Ni |
title_fullStr | Nuclear Charge Radii of the Nickel Isotopes $^{58-68,70}$Ni |
title_full_unstemmed | Nuclear Charge Radii of the Nickel Isotopes $^{58-68,70}$Ni |
title_short | Nuclear Charge Radii of the Nickel Isotopes $^{58-68,70}$Ni |
title_sort | nuclear charge radii of the nickel isotopes $^{58-68,70}$ni |
topic | nucl-th Nuclear Physics - Theory nucl-ex Nuclear Physics - Experiment |
url | https://dx.doi.org/10.1103/PhysRevLett.128.022502 http://cds.cern.ch/record/2798893 |
work_keys_str_mv | AT malbrunotettenauers nuclearchargeradiiofthenickelisotopes586870ni AT kaufmanns nuclearchargeradiiofthenickelisotopes586870ni AT baccas nuclearchargeradiiofthenickelisotopes586870ni AT barbieric nuclearchargeradiiofthenickelisotopes586870ni AT billowesj nuclearchargeradiiofthenickelisotopes586870ni AT bissellml nuclearchargeradiiofthenickelisotopes586870ni AT blaumk nuclearchargeradiiofthenickelisotopes586870ni AT chealb nuclearchargeradiiofthenickelisotopes586870ni AT duguett nuclearchargeradiiofthenickelisotopes586870ni AT ruizrfgarcia nuclearchargeradiiofthenickelisotopes586870ni AT ginsw nuclearchargeradiiofthenickelisotopes586870ni AT gorgesc nuclearchargeradiiofthenickelisotopes586870ni AT hageng nuclearchargeradiiofthenickelisotopes586870ni AT heylenh nuclearchargeradiiofthenickelisotopes586870ni AT holtjd nuclearchargeradiiofthenickelisotopes586870ni AT jansengr nuclearchargeradiiofthenickelisotopes586870ni AT kanellakopoulosa nuclearchargeradiiofthenickelisotopes586870ni AT kortelainenm nuclearchargeradiiofthenickelisotopes586870ni AT miyagit nuclearchargeradiiofthenickelisotopes586870ni AT navratilp nuclearchargeradiiofthenickelisotopes586870ni AT nazarewiczw nuclearchargeradiiofthenickelisotopes586870ni AT neugartr nuclearchargeradiiofthenickelisotopes586870ni AT neyensg nuclearchargeradiiofthenickelisotopes586870ni AT nortershauserw nuclearchargeradiiofthenickelisotopes586870ni AT novariosj nuclearchargeradiiofthenickelisotopes586870ni AT papenbrockt nuclearchargeradiiofthenickelisotopes586870ni AT ratajczykt nuclearchargeradiiofthenickelisotopes586870ni AT reinhardpg nuclearchargeradiiofthenickelisotopes586870ni AT rodriguezlv nuclearchargeradiiofthenickelisotopes586870ni AT sanchezr nuclearchargeradiiofthenickelisotopes586870ni AT sailers nuclearchargeradiiofthenickelisotopes586870ni AT schwenka nuclearchargeradiiofthenickelisotopes586870ni AT simonisj nuclearchargeradiiofthenickelisotopes586870ni AT somav nuclearchargeradiiofthenickelisotopes586870ni AT strobergsr nuclearchargeradiiofthenickelisotopes586870ni AT wehnerl nuclearchargeradiiofthenickelisotopes586870ni AT wraithc nuclearchargeradiiofthenickelisotopes586870ni AT xiel nuclearchargeradiiofthenickelisotopes586870ni AT xuzy nuclearchargeradiiofthenickelisotopes586870ni AT yangxf nuclearchargeradiiofthenickelisotopes586870ni AT yordanovdt nuclearchargeradiiofthenickelisotopes586870ni |