Cargando…
Measurement of isolated photons in pp collisions at $\sqrt{s} = 7$ TeV with ALICE
Particle collisions provide insight into the structure of matter and the interaction of its constituents. Furthermore, they also allow a better understanding of the processes involved in the formation of the universe. To cover these diverse areas, it is necessary to study different observables and c...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2798899 http://dx.doi.org/10.21248/gups.64415 |
Sumario: | Particle collisions provide insight into the structure of matter and the interaction of its constituents. Furthermore, they also allow a better understanding of the processes involved in the formation of the universe. To cover these diverse areas, it is necessary to study different observables and collision systems. A particular challenge is to find a suitable measurable observable for a theoretically meaningful variable and to develop a measurement process taking into account the experiment. The analyses of particle collisions in this thesis cover many of the challenges and objectives mentioned above. The focus of the work is the analysis of isolated photons at an energy of √s = 7 TeV. In addition, the work also includes measurements of the average transverse momentum in Pb-Pb collisions at an energy of √s = 2.76 TeV. Apart from the collision system, the two analyses complement each other in other respects. The measurement of isolated photons represents the first measurement of this observable with ALICE and thus lays the foundation for further measurements at other collision systems and energies. The measurement of the mean transverse momentum, on the other hand, is based on an established measurement and thus allows the comparison of different collision systems. Likewise, the physical processes studied differ. With the measurement of isolated photons, hard scattering processes in the collisions can be investigated, while the average transverse momentum allows a description of the underlying event. When measuring isolated photons, it should be noted that isolated photons are a measurable observable that cannot be assigned to an explicit physical process. The isolation criterion used in the analysis serves to increase the fraction of prompt photons from 2→2 processes. These photons can contribute to a better understanding of the parton density function (PDF) of gluons, as well as be used as a reference for perturbative QCD calculations. Of particular importance for the analysis are the cluster shape and the energy within a certain radius around the potential photon. The combination of these two quantities allows determining the background using the ABCD method established by CDF and ATLAS. The result obtained in this way extends the previous measurements of the cross-section of isolated photons at the LHC to lower transverse momenta. Similarly, the previous measurements of the cross-section as a function of the scale variable xT are extended to lower values. The main focus of the measurement of the average transverse momentum of charged particles ⟨pT⟩ is to compare the measurement for the pp, p-Pb, and Pb-Pb collision systems. To obtain a direct comparison between the different collision systems, ⟨pT ⟩ is measured against the true multiplicity nch. Since the multiplicity range of pp and p-Pb collisions is limited, the analysis in Pb-Pb collisions is restricted to nch = 100. This range corresponds to peripheral Pb-Pb collisions. A particular focus of the analysis is the determination and reduction of the electromagnetic background in peripheral Pb-Pb collisions and the determination of nch based on the measured multiplicity nacc . The different collision systems show similar behavior with increasing multiplicity. The steepest increase occurs at low multiplicities and changes for all collision systems at nch = 14. With higher multiplicities, the slope reduces further, with the effect being most pronounced in Pb-Pb collisions. |
---|