Cargando…
Quantum integration of elementary particle processes
We apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as <math altimg="si1.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.physletb.2022.137228 http://cds.cern.ch/record/2799041 |
_version_ | 1780972509570531328 |
---|---|
author | Agliardi, Gabriele Grossi, Michele Pellen, Mathieu Prati, Enrico |
author_facet | Agliardi, Gabriele Grossi, Michele Pellen, Mathieu Prati, Enrico |
author_sort | Agliardi, Gabriele |
collection | CERN |
description | We apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as <math altimg="si1.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msup><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo></mrow></msup><mo stretchy="false">→</mo><mi>q</mi><mover accent="true"><mrow><mi>q</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> and <math altimg="si2.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msup><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo></mrow></msup><mo stretchy="false">→</mo><mi>q</mi><msup><mrow><mover accent="true"><mrow><mi>q</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>′</mo></mrow></msup><mtext>W</mtext></math>. The corresponding probability distributions can be first appropriately loaded on a quantum computer using either quantum Generative Adversarial Networks or an exact method. The distributions are then integrated using the method of Quantum Amplitude Estimation which shows a quadratic speed-up with respect to classical techniques. In simulations of noiseless quantum computers, we obtain per-cent accurate results for one- and two-dimensional integration with up to six qubits. This work paves the way towards taking advantage of quantum algorithms for the integration of high-energy processes. |
id | cern-2799041 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2022 |
record_format | invenio |
spelling | cern-27990412023-10-14T02:22:53Zdoi:10.1016/j.physletb.2022.137228http://cds.cern.ch/record/2799041engAgliardi, GabrieleGrossi, MichelePellen, MathieuPrati, EnricoQuantum integration of elementary particle processesquant-phGeneral Theoretical Physicshep-phParticle Physics - PhenomenologyWe apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as <math altimg="si1.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msup><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo></mrow></msup><mo stretchy="false">→</mo><mi>q</mi><mover accent="true"><mrow><mi>q</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> and <math altimg="si2.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msup><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo></mrow></msup><mo stretchy="false">→</mo><mi>q</mi><msup><mrow><mover accent="true"><mrow><mi>q</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>′</mo></mrow></msup><mtext>W</mtext></math>. The corresponding probability distributions can be first appropriately loaded on a quantum computer using either quantum Generative Adversarial Networks or an exact method. The distributions are then integrated using the method of Quantum Amplitude Estimation which shows a quadratic speed-up with respect to classical techniques. In simulations of noiseless quantum computers, we obtain per-cent accurate results for one- and two-dimensional integration with up to six qubits. This work paves the way towards taking advantage of quantum algorithms for the integration of high-energy processes.We apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as ${\rm e}^+{\rm e}^- \to q \bar q$ and ${\rm e}^+{\rm e}^- \to q \bar q' {\rm W}$. The corresponding probability distributions can be first appropriately loaded on a quantum computer using either quantum Generative Adversarial Networks or an exact method. The distributions are then integrated sing the method of Quantum Amplitude Estimation which shows a quadratic speed-up with respect to classical techniques. In simulations of noiseless quantum computers, we obtain per-cent accurate results for one- and two-dimensional integration with up to six qubits. This work paves the way towards taking advantage of quantum algorithms for the integration of high-energy processes.arXiv:2201.01547FR-PHENO-2022-01oai:cds.cern.ch:27990412022-01-05 |
spellingShingle | quant-ph General Theoretical Physics hep-ph Particle Physics - Phenomenology Agliardi, Gabriele Grossi, Michele Pellen, Mathieu Prati, Enrico Quantum integration of elementary particle processes |
title | Quantum integration of elementary particle processes |
title_full | Quantum integration of elementary particle processes |
title_fullStr | Quantum integration of elementary particle processes |
title_full_unstemmed | Quantum integration of elementary particle processes |
title_short | Quantum integration of elementary particle processes |
title_sort | quantum integration of elementary particle processes |
topic | quant-ph General Theoretical Physics hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1016/j.physletb.2022.137228 http://cds.cern.ch/record/2799041 |
work_keys_str_mv | AT agliardigabriele quantumintegrationofelementaryparticleprocesses AT grossimichele quantumintegrationofelementaryparticleprocesses AT pellenmathieu quantumintegrationofelementaryparticleprocesses AT pratienrico quantumintegrationofelementaryparticleprocesses |