Cargando…

Quantum integration of elementary particle processes

We apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as <math altimg="si1.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="...

Descripción completa

Detalles Bibliográficos
Autores principales: Agliardi, Gabriele, Grossi, Michele, Pellen, Mathieu, Prati, Enrico
Lenguaje:eng
Publicado: 2022
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.physletb.2022.137228
http://cds.cern.ch/record/2799041
_version_ 1780972509570531328
author Agliardi, Gabriele
Grossi, Michele
Pellen, Mathieu
Prati, Enrico
author_facet Agliardi, Gabriele
Grossi, Michele
Pellen, Mathieu
Prati, Enrico
author_sort Agliardi, Gabriele
collection CERN
description We apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as <math altimg="si1.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msup><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo></mrow></msup><mo stretchy="false">→</mo><mi>q</mi><mover accent="true"><mrow><mi>q</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> and <math altimg="si2.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msup><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo></mrow></msup><mo stretchy="false">→</mo><mi>q</mi><msup><mrow><mover accent="true"><mrow><mi>q</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>′</mo></mrow></msup><mtext>W</mtext></math>. The corresponding probability distributions can be first appropriately loaded on a quantum computer using either quantum Generative Adversarial Networks or an exact method. The distributions are then integrated using the method of Quantum Amplitude Estimation which shows a quadratic speed-up with respect to classical techniques. In simulations of noiseless quantum computers, we obtain per-cent accurate results for one- and two-dimensional integration with up to six qubits. This work paves the way towards taking advantage of quantum algorithms for the integration of high-energy processes.
id cern-2799041
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2022
record_format invenio
spelling cern-27990412023-10-14T02:22:53Zdoi:10.1016/j.physletb.2022.137228http://cds.cern.ch/record/2799041engAgliardi, GabrieleGrossi, MichelePellen, MathieuPrati, EnricoQuantum integration of elementary particle processesquant-phGeneral Theoretical Physicshep-phParticle Physics - PhenomenologyWe apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as <math altimg="si1.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msup><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo></mrow></msup><mo stretchy="false">→</mo><mi>q</mi><mover accent="true"><mrow><mi>q</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></math> and <math altimg="si2.svg"><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">+</mo></mrow></msup><msup><mrow><mtext>e</mtext></mrow><mrow><mo linebreak="badbreak" linebreakstyle="after">−</mo></mrow></msup><mo stretchy="false">→</mo><mi>q</mi><msup><mrow><mover accent="true"><mrow><mi>q</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow><mrow><mo>′</mo></mrow></msup><mtext>W</mtext></math>. The corresponding probability distributions can be first appropriately loaded on a quantum computer using either quantum Generative Adversarial Networks or an exact method. The distributions are then integrated using the method of Quantum Amplitude Estimation which shows a quadratic speed-up with respect to classical techniques. In simulations of noiseless quantum computers, we obtain per-cent accurate results for one- and two-dimensional integration with up to six qubits. This work paves the way towards taking advantage of quantum algorithms for the integration of high-energy processes.We apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as ${\rm e}^+{\rm e}^- \to q \bar q$ and ${\rm e}^+{\rm e}^- \to q \bar q' {\rm W}$. The corresponding probability distributions can be first appropriately loaded on a quantum computer using either quantum Generative Adversarial Networks or an exact method. The distributions are then integrated sing the method of Quantum Amplitude Estimation which shows a quadratic speed-up with respect to classical techniques. In simulations of noiseless quantum computers, we obtain per-cent accurate results for one- and two-dimensional integration with up to six qubits. This work paves the way towards taking advantage of quantum algorithms for the integration of high-energy processes.arXiv:2201.01547FR-PHENO-2022-01oai:cds.cern.ch:27990412022-01-05
spellingShingle quant-ph
General Theoretical Physics
hep-ph
Particle Physics - Phenomenology
Agliardi, Gabriele
Grossi, Michele
Pellen, Mathieu
Prati, Enrico
Quantum integration of elementary particle processes
title Quantum integration of elementary particle processes
title_full Quantum integration of elementary particle processes
title_fullStr Quantum integration of elementary particle processes
title_full_unstemmed Quantum integration of elementary particle processes
title_short Quantum integration of elementary particle processes
title_sort quantum integration of elementary particle processes
topic quant-ph
General Theoretical Physics
hep-ph
Particle Physics - Phenomenology
url https://dx.doi.org/10.1016/j.physletb.2022.137228
http://cds.cern.ch/record/2799041
work_keys_str_mv AT agliardigabriele quantumintegrationofelementaryparticleprocesses
AT grossimichele quantumintegrationofelementaryparticleprocesses
AT pellenmathieu quantumintegrationofelementaryparticleprocesses
AT pratienrico quantumintegrationofelementaryparticleprocesses