Cargando…
Near Physical Point Lattice Calculation of Isospin-Breaking Corrections to $K_{\ell2}/\pi_{\ell2}$
In recent years, lattice determinations of non-perturbative quantities such as $f_K$ and $f_\pi$, which are relevant for $V_{us}$ and $V_{ud}$, have reached an impressive precision of $\mathcal{O}(1\%)$ or better. To make further progress, electromagnetic and strong isospin breaking effects must be...
Autores principales: | , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.396.0110 http://cds.cern.ch/record/2799242 |
Sumario: | In recent years, lattice determinations of non-perturbative quantities such as $f_K$ and $f_\pi$, which are relevant for $V_{us}$ and $V_{ud}$, have reached an impressive precision of $\mathcal{O}(1\%)$ or better. To make further progress, electromagnetic and strong isospin breaking effects must be included in lattice QCD simulations.
We present the status of the RBC\&UKQCD lattice calculation of isospin-breaking corrections to light meson leptonic decays. This computation is performed in a (2+1)-flavor QCD simulation using Domain Wall Fermions with near-physical quark masses. The isospin-breaking effects are implemented via a perturbative expansion of the action in $\alpha$ and $(m_u-m_d)$. In this calculation, we work in the electro-quenched approximation and the photons are implemented in the Feynman gauge and $\text{QED}_\text{L}$ formulation. |
---|