Cargando…
Equalities between greatest common divisors involving three coprime pairs
A new equality of the greatest common divisor (gcd) of quantities involving three coprime pairs is proven in this note. For $a_i$ and $b_i$ positive integers such that gcd$(a_i, b+i) = 1$ for $i ∈ {1, 2, 3}$ and $d_{ij} = |aibj − ajbi|$, then gcd$(d_{32}; d_{31})$ = gcd$(d_{32}; d_{21}$) = gcd$(d_{3...
Autor principal: | García, Rogelio Tomás |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.7546/nntdm.2020.26.3.5-7 http://cds.cern.ch/record/2799367 |
Ejemplares similares
-
Relative curves, theta divisor and Deligne pairing
por: Biswas, I, et al.
Publicado: (1995) -
Divisor theory
por: Edwards, Harold M
Publicado: (1990) -
Conference on Small Divisors
Publicado: (1990) -
Asymptotic prime divisors
por: McAdam, Stephen
Publicado: (1983) -
Algebraic equivalence of real divisors
por: Kucharz, W
Publicado: (2000)